Clifford‐valued linear canonical wavelet transform and the corresponding uncertainty principles

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-12 DOI:10.1002/mma.10468
Shahbaz Rafiq, Mohammad Younus Bhat
{"title":"Clifford‐valued linear canonical wavelet transform and the corresponding uncertainty principles","authors":"Shahbaz Rafiq, Mohammad Younus Bhat","doi":"10.1002/mma.10468","DOIUrl":null,"url":null,"abstract":"The present article establishes a novel transform known as Clifford‐valued linear canonical wavelet transform which is intended to represent ‐dimensional Clifford‐valued signals at various scales, locations, and orientations. The suggested transform is capable of representing signals in the Clifford domain in addition to inheriting the characteristics of the Clifford wavelet transform. In the beginning, we demonstrate the proposed transform by the help of ‐dimensional difference of Gaussian wavelets. We then establish the fundamental properties of the proposed transform like Parseval's formula, inversion formula, and characterization of its range using Clifford linear canonical transform and its convolution. To conclude our work, we derive an analog of Heisenberg's and local uncertainty inequalities for the proposed transform.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The present article establishes a novel transform known as Clifford‐valued linear canonical wavelet transform which is intended to represent ‐dimensional Clifford‐valued signals at various scales, locations, and orientations. The suggested transform is capable of representing signals in the Clifford domain in addition to inheriting the characteristics of the Clifford wavelet transform. In the beginning, we demonstrate the proposed transform by the help of ‐dimensional difference of Gaussian wavelets. We then establish the fundamental properties of the proposed transform like Parseval's formula, inversion formula, and characterization of its range using Clifford linear canonical transform and its convolution. To conclude our work, we derive an analog of Heisenberg's and local uncertainty inequalities for the proposed transform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
克利福德值线性小波变换和相应的不确定性原理
本文建立了一种称为克利福德值线性典型小波变换的新型变换,旨在表示不同尺度、位置和方向的-维克利福德值信号。建议的变换除了继承克利福德小波变换的特点外,还能表示克利福德域中的信号。首先,我们借助高斯小波的-维差分来演示所建议的变换。然后,我们利用克利福德线性规范变换及其卷积建立了所提变换的基本特性,如帕斯瓦尔公式、反转公式和范围特征。最后,我们为所提出的变换推导出了海森堡不确定性和局部不确定性不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1