Yizhou Wang;Can Qin;Rongzhe Wei;Yi Xu;Yue Bai;Yun Fu
{"title":"SLA$^{{\\text{2}}}$2P: Self-Supervised Anomaly Detection With Adversarial Perturbation","authors":"Yizhou Wang;Can Qin;Rongzhe Wei;Yi Xu;Yue Bai;Yun Fu","doi":"10.1109/TKDE.2024.3448473","DOIUrl":null,"url":null,"abstract":"Anomaly detection is a foundational yet difficult problem in machine learning. In this work, we propose a new and effective framework, dubbed as SLA\n<sup>2</sup>\nP, for unsupervised anomaly detection. Following the extraction of delegate embeddings from raw data, we implement random projections on the features and consider features transformed by disparate projections as being associated with separate pseudo-classes. We then train a neural network for classification on these transformed features to conduct self-supervised learning. Subsequently, we introduce adversarial disturbances to the modified attributes, and we develop anomaly scores built on the classifier's predictive uncertainties concerning these disrupted features. Our approach is motivated by the fact that as anomalies are relatively rare and decentralized, 1) the training of the pseudo-label classifier concentrates more on acquiring the semantic knowledge of regular data instead of anomalous data; 2) the altered attributes of the normal data exhibit greater resilience to disturbances compared to those of the anomalous data. Therefore, the disrupted modified attributes of anomalies can not be well classified and correspondingly tend to attain lesser anomaly scores. The results of experiments on various benchmark datasets for images, text, and inherently tabular data demonstrate that SLA\n<sup>2</sup>\nP achieves state-of-the-art performance consistently.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"9282-9293"},"PeriodicalIF":8.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10645289/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Anomaly detection is a foundational yet difficult problem in machine learning. In this work, we propose a new and effective framework, dubbed as SLA
2
P, for unsupervised anomaly detection. Following the extraction of delegate embeddings from raw data, we implement random projections on the features and consider features transformed by disparate projections as being associated with separate pseudo-classes. We then train a neural network for classification on these transformed features to conduct self-supervised learning. Subsequently, we introduce adversarial disturbances to the modified attributes, and we develop anomaly scores built on the classifier's predictive uncertainties concerning these disrupted features. Our approach is motivated by the fact that as anomalies are relatively rare and decentralized, 1) the training of the pseudo-label classifier concentrates more on acquiring the semantic knowledge of regular data instead of anomalous data; 2) the altered attributes of the normal data exhibit greater resilience to disturbances compared to those of the anomalous data. Therefore, the disrupted modified attributes of anomalies can not be well classified and correspondingly tend to attain lesser anomaly scores. The results of experiments on various benchmark datasets for images, text, and inherently tabular data demonstrate that SLA
2
P achieves state-of-the-art performance consistently.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.