Continual Learning for Smart City: A Survey

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-08-21 DOI:10.1109/TKDE.2024.3447123
Li Yang;Zhipeng Luo;Shiming Zhang;Fei Teng;Tianrui Li
{"title":"Continual Learning for Smart City: A Survey","authors":"Li Yang;Zhipeng Luo;Shiming Zhang;Fei Teng;Tianrui Li","doi":"10.1109/TKDE.2024.3447123","DOIUrl":null,"url":null,"abstract":"With the digitization of modern cities, large data volumes and powerful computational resources facilitate the rapid update of intelligent models deployed in smart cities. Continual learning (CL) is a novel machine learning paradigm that constantly updates models to adapt to changing environments, where the learning tasks, data, and distributions can vary over time. Our survey provides a comprehensive review of continual learning methods that are widely used in smart city development. The content consists of three parts: 1) Methodology-wise. We categorize a large number of basic CL methods and advanced CL frameworks in combination with other learning paradigms including graph learning, spatial-temporal learning, multi-modal learning, and federated learning. 2) Application-wise. We present numerous CL applications covering transportation, environment, public health, safety, networks, and associated datasets related to urban computing. 3) Challenges. We discuss current problems and challenges and envision several promising research directions. We believe this survey can help relevant researchers quickly familiarize themselves with the current state of continual learning research used in smart city development and direct them to future research trends.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"7805-7824"},"PeriodicalIF":8.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10643332/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the digitization of modern cities, large data volumes and powerful computational resources facilitate the rapid update of intelligent models deployed in smart cities. Continual learning (CL) is a novel machine learning paradigm that constantly updates models to adapt to changing environments, where the learning tasks, data, and distributions can vary over time. Our survey provides a comprehensive review of continual learning methods that are widely used in smart city development. The content consists of three parts: 1) Methodology-wise. We categorize a large number of basic CL methods and advanced CL frameworks in combination with other learning paradigms including graph learning, spatial-temporal learning, multi-modal learning, and federated learning. 2) Application-wise. We present numerous CL applications covering transportation, environment, public health, safety, networks, and associated datasets related to urban computing. 3) Challenges. We discuss current problems and challenges and envision several promising research directions. We believe this survey can help relevant researchers quickly familiarize themselves with the current state of continual learning research used in smart city development and direct them to future research trends.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智慧城市的持续学习:调查
随着现代城市的数字化,海量数据和强大的计算资源促进了智慧城市中部署的智能模型的快速更新。持续学习(CL)是一种新颖的机器学习范式,它能不断更新模型以适应不断变化的环境,在这种环境中,学习任务、数据和分布都会随时间而变化。我们的调查全面回顾了广泛应用于智慧城市开发的持续学习方法。内容包括三个部分:1)方法论。我们结合图学习、时空学习、多模态学习和联盟学习等其他学习范式,对大量基本持续学习方法和高级持续学习框架进行了分类。2) 应用方面。我们介绍了大量 CL 应用,涵盖交通、环境、公共卫生、安全、网络以及与城市计算相关的数据集。3) 挑战。我们讨论了当前的问题和挑战,并展望了几个有前景的研究方向。我们相信,这份调查报告可以帮助相关研究人员快速熟悉智慧城市发展中使用的持续学习研究现状,并引导他们关注未来的研究趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
SE Factual Knowledge in Frozen Giant Code Model: A Study on FQN and Its Retrieval Online Dynamic Hybrid Broad Learning System for Real-Time Safety Assessment of Dynamic Systems Iterative Soft Prompt-Tuning for Unsupervised Domain Adaptation A Derivative Topic Dissemination Model Based on Representation Learning and Topic Relevance L-ASCRA: A Linearithmic Time Approximate Spectral Clustering Algorithm Using Topologically-Preserved Representatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1