{"title":"Real-Time Prediction of Multi-Degree-of-Freedom Ship Motion and Resting Periods Using LSTM Networks","authors":"Zhanyang Chen, Xingyun Liu, Xiao Ji, Hongbin Gui","doi":"10.3390/jmse12091591","DOIUrl":null,"url":null,"abstract":"This study presents a novel real-time prediction technique for multi-degree-of-freedom ship motion and resting periods utilizing Long Short-Term Memory (LSTM) networks. The primary objective is to enhance the safety and efficiency of shipborne helicopter landings by accurately predicting heave, pitch, and roll data over an 8 s forecast horizon. The proposed method utilizes the LSTM network’s capability to model complex nonlinear time series while employing the User Datagram Protocol (UDP) to ensure efficient data transmission. The model’s performance was validated using real-world ship motion data collected across various sea states, achieving a maximum prediction error of less than 15%. The findings indicate that the LSTM-based model provides reliable predictions of ship resting periods, which are crucial for safe helicopter operations in adverse sea conditions. This method’s capability to provide real-time predictions with minimal computational overhead highlights its potential for broader applications in marine engineering. Future research should explore integrating multi-model fusion techniques to enhance the model’s adaptability to rapidly changing sea conditions and improve the prediction accuracy.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"295 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091591","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel real-time prediction technique for multi-degree-of-freedom ship motion and resting periods utilizing Long Short-Term Memory (LSTM) networks. The primary objective is to enhance the safety and efficiency of shipborne helicopter landings by accurately predicting heave, pitch, and roll data over an 8 s forecast horizon. The proposed method utilizes the LSTM network’s capability to model complex nonlinear time series while employing the User Datagram Protocol (UDP) to ensure efficient data transmission. The model’s performance was validated using real-world ship motion data collected across various sea states, achieving a maximum prediction error of less than 15%. The findings indicate that the LSTM-based model provides reliable predictions of ship resting periods, which are crucial for safe helicopter operations in adverse sea conditions. This method’s capability to provide real-time predictions with minimal computational overhead highlights its potential for broader applications in marine engineering. Future research should explore integrating multi-model fusion techniques to enhance the model’s adaptability to rapidly changing sea conditions and improve the prediction accuracy.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.