G. A. Pribytkov, A. V. Baranovskiy, V. V. Korzhova, I. A. Firsina, V. P. Krivopalov
{"title":"Effect of Ethanol on the Phase and Elemental Composition of Mechanically Activated Titaniumcarbon Powder Mixtures","authors":"G. A. Pribytkov, A. V. Baranovskiy, V. V. Korzhova, I. A. Firsina, V. P. Krivopalov","doi":"10.1007/s11182-024-03221-1","DOIUrl":null,"url":null,"abstract":"<p>Using the method of hot compaction (HC) of mechanically activated powder mixtures of titanium and carbon (carbon black) in an ethanol medium, titanium-matrix composites with a carbide strengthening phase were obtained. To obtain a composite with different content of titanium carbide, the amount of carbon was varied within the range of 0–1 wt.%. The mechanically activated carbon-doped titanium powder mixtures, as well as the mechanically activated titanium powder subjected to HC (temperature of 900°C and holding time of 15 min) and additional annealing at different temperatures and holding times are studied by optical metallography, scanning electron microscopy, and X-ray diffraction and chemical analysis. According to the metallography and X-ray diffraction results, the TiC content in the HC composite has been found to be significantly higher than the estimated value. The reason is a destruction of ethanol molecules during mechanical activation resulting in the release of carbon and hydrogen. To obtain the targeted (no more than 10 vol.%) TiC content in the titanium matrix composite, it is necessary to establish a specific technological mode for the mechanical activation of the titanium powder.</p>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03221-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Using the method of hot compaction (HC) of mechanically activated powder mixtures of titanium and carbon (carbon black) in an ethanol medium, titanium-matrix composites with a carbide strengthening phase were obtained. To obtain a composite with different content of titanium carbide, the amount of carbon was varied within the range of 0–1 wt.%. The mechanically activated carbon-doped titanium powder mixtures, as well as the mechanically activated titanium powder subjected to HC (temperature of 900°C and holding time of 15 min) and additional annealing at different temperatures and holding times are studied by optical metallography, scanning electron microscopy, and X-ray diffraction and chemical analysis. According to the metallography and X-ray diffraction results, the TiC content in the HC composite has been found to be significantly higher than the estimated value. The reason is a destruction of ethanol molecules during mechanical activation resulting in the release of carbon and hydrogen. To obtain the targeted (no more than 10 vol.%) TiC content in the titanium matrix composite, it is necessary to establish a specific technological mode for the mechanical activation of the titanium powder.
期刊介绍:
Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.