Effect of thermo-mechanical treatment on microstructure and mechanical properties of wire-arc additively manufactured Al-Cu alloy

IF 3.7 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Central South University Pub Date : 2024-08-13 DOI:10.1007/s11771-024-5740-2
Tao Zhang, Zhen-yang Qin, Hai Gong, Yun-xin Wu, Xin Chen
{"title":"Effect of thermo-mechanical treatment on microstructure and mechanical properties of wire-arc additively manufactured Al-Cu alloy","authors":"Tao Zhang, Zhen-yang Qin, Hai Gong, Yun-xin Wu, Xin Chen","doi":"10.1007/s11771-024-5740-2","DOIUrl":null,"url":null,"abstract":"<p>Wire-arc additive manufacture (WAAM) has great potential for manufacturing of Al-Cu components. However, inferior mechanical properties of WAAM deposited material restrict its industrial application. Inter-layer cold rolling and thermo-mechanical heat treatment (T8) with pre-stretching deformation between solution and aging treatment were adopted in this study. Their effects on hardness, mechanical properties and microstructure were analyzed and compared to the conventional heat treatment (T6). The results show that cold rolling increases the hardness and strengths, which further increase with T8 treatment. The ultimate tensile strength (UTS) of 513 MPa and yield stress (YS) of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment, which is much higher than that in the as-deposited samples. The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling; while both the T6 and T8 treatments decrease the elongation. The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitated <i>θ</i>′ phases, which inhibits the dislocation movement and enhances the strengths; as a result, T8 treatment shows better strengthening effect than the T6 treatment. The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5740-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Wire-arc additive manufacture (WAAM) has great potential for manufacturing of Al-Cu components. However, inferior mechanical properties of WAAM deposited material restrict its industrial application. Inter-layer cold rolling and thermo-mechanical heat treatment (T8) with pre-stretching deformation between solution and aging treatment were adopted in this study. Their effects on hardness, mechanical properties and microstructure were analyzed and compared to the conventional heat treatment (T6). The results show that cold rolling increases the hardness and strengths, which further increase with T8 treatment. The ultimate tensile strength (UTS) of 513 MPa and yield stress (YS) of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment, which is much higher than that in the as-deposited samples. The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling; while both the T6 and T8 treatments decrease the elongation. The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitated θ′ phases, which inhibits the dislocation movement and enhances the strengths; as a result, T8 treatment shows better strengthening effect than the T6 treatment. The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热机械处理对线弧快速成型铝铜合金微观结构和机械性能的影响
线弧增材制造(WAAM)在制造铝铜部件方面具有巨大潜力。然而,WAAM 沉积材料的机械性能较差,限制了其工业应用。本研究采用了层间冷轧和热机械热处理(T8),并在固溶和时效处理之间进行了预拉伸变形。分析了它们对硬度、机械性能和微观结构的影响,并与传统热处理(T6)进行了比较。结果表明,冷轧提高了硬度和强度,T8 处理进一步提高了硬度和强度。经 T8 处理的层间冷轧样品的极限拉伸强度(UTS)为 513 兆帕,屈服应力(YS)为 413 兆帕,远高于原轧制样品。冷轧样品的伸长率高于原轧制样品,原因是冷轧过程中气孔明显消除;而 T6 和 T8 处理都会降低伸长率。冷轧和预拉伸变形都有助于形成致密分散的沉淀θ′相,从而抑制位错运动,提高强度;因此,T8 处理比 T6 处理显示出更好的强化效果。对强化机理进行了分析,主要与加工硬化和沉淀强化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Central South University
Journal of Central South University METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.10
自引率
6.80%
发文量
242
审稿时长
2-4 weeks
期刊介绍: Focuses on the latest research achievements in mining and metallurgy Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering
期刊最新文献
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion Influence of rare earth element erbium on microstructures and properties of as-cast 8030 aluminum alloy The improvement of large-scale-region landslide susceptibility mapping accuracy by transfer learning Energy evolution model and energy response characteristics of freeze-thaw damaged sandstone under uniaxial compression A hybrid ventilation scheme applied to bi-directional excavation tunnel construction with a long inclined shaft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1