{"title":"Dual robust electrode-electrolyte interfaces enabled by fluorinated electrolyte for high-performance zinc metal batteries","authors":"","doi":"10.1016/j.matt.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>Rechargeable zinc metal batteries (ZMBs) are promising for fabricating low-cost, safe, and high-energy-density storage systems. However, ZMBs typically undergo interfacial side reactions and cathode dissolution during cycling, resulting in the depletion of active materials and performance decay of batteries. Here, we develop a localized high-concentration fluorinated electrolyte featuring a high fluorine/oxygen atomic ratio (388.72%) with beneficial solvation chemistry, fostering the simultaneous formation of a cathode-electrolyte interphase (CEI) enriched with C–F bonds and a ZnF<sub>2</sub>-dominant solid-electrolyte interphase (SEI). The constructed robust electrode-electrolyte interfaces (EEIs) contribute to dendrite-free zinc deposition and a highly stable cathode, demonstrating soft-packed Zn||Mn-doped V<sub>2</sub>O<sub>5</sub> batteries with an exceptional energy density (91.25 Wh kg<sup>−1</sup><sub>cathode+anode</sub>) and capacity retention (90.5%) over 500 cycles employing a limited zinc supply. The anode-free ZMBs deliver a record power density of 153.9 Wh kg<sup>−1</sup><sub>cathode+anode</sub> with a high capacity retention of 80.2% over 1,500 cycles. This research provides significant insights for interface construction in multivalent ion batteries.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259023852400434X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rechargeable zinc metal batteries (ZMBs) are promising for fabricating low-cost, safe, and high-energy-density storage systems. However, ZMBs typically undergo interfacial side reactions and cathode dissolution during cycling, resulting in the depletion of active materials and performance decay of batteries. Here, we develop a localized high-concentration fluorinated electrolyte featuring a high fluorine/oxygen atomic ratio (388.72%) with beneficial solvation chemistry, fostering the simultaneous formation of a cathode-electrolyte interphase (CEI) enriched with C–F bonds and a ZnF2-dominant solid-electrolyte interphase (SEI). The constructed robust electrode-electrolyte interfaces (EEIs) contribute to dendrite-free zinc deposition and a highly stable cathode, demonstrating soft-packed Zn||Mn-doped V2O5 batteries with an exceptional energy density (91.25 Wh kg−1cathode+anode) and capacity retention (90.5%) over 500 cycles employing a limited zinc supply. The anode-free ZMBs deliver a record power density of 153.9 Wh kg−1cathode+anode with a high capacity retention of 80.2% over 1,500 cycles. This research provides significant insights for interface construction in multivalent ion batteries.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.