Jinhao Liang,Jin Huang,Jianzhan Yang,Weihong Liang,Haoxiang Li,Yunshan Wu,Bo Liu
{"title":"Synthesis and in vitro evaluation of benzo[b]thiophene-3-carboxylic acid 1,1-dioxide derivatives as anticancer agents targeting the RhoA/ROCK pathway.","authors":"Jinhao Liang,Jin Huang,Jianzhan Yang,Weihong Liang,Haoxiang Li,Yunshan Wu,Bo Liu","doi":"10.1080/14756366.2024.2390911","DOIUrl":null,"url":null,"abstract":"Rho family GTPases regulate cellular processes and promote tumour growth and metastasis; thus, RhoA is a potential target for tumour metastasis inhibition. However, limited progress has been made in the development of RhoA targeting anticancer drugs. Here, we synthesised benzo[b]thiophene-3-carboxylic acid 1,1-dioxide derivatives based on a covalent inhibitor of RhoA (DC-Rhoin), reported in our previous studies. The observed structure-activity relationship (contributed by carboxamide in C-3 and 1-methyl-1H-pyrazol in C-5) enhanced the anti-proliferative activity of the derivatives. Compound b19 significantly inhibited the proliferation, migration, and invasion of MDA-MB-231 cells and promoted their apoptosis. The suppression of myosin light chain phosphorylation and the formation of stress fibres confirmed the inhibitory activity of b19 via the RhoA/ROCK pathway. b19 exhibited a different binding pattern from DC-Rhoin, as observed in molecular docking analysis. This study provides a reference for the development of anticancer agents targeting the RhoA/ROCK pathway.","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2024.2390911","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rho family GTPases regulate cellular processes and promote tumour growth and metastasis; thus, RhoA is a potential target for tumour metastasis inhibition. However, limited progress has been made in the development of RhoA targeting anticancer drugs. Here, we synthesised benzo[b]thiophene-3-carboxylic acid 1,1-dioxide derivatives based on a covalent inhibitor of RhoA (DC-Rhoin), reported in our previous studies. The observed structure-activity relationship (contributed by carboxamide in C-3 and 1-methyl-1H-pyrazol in C-5) enhanced the anti-proliferative activity of the derivatives. Compound b19 significantly inhibited the proliferation, migration, and invasion of MDA-MB-231 cells and promoted their apoptosis. The suppression of myosin light chain phosphorylation and the formation of stress fibres confirmed the inhibitory activity of b19 via the RhoA/ROCK pathway. b19 exhibited a different binding pattern from DC-Rhoin, as observed in molecular docking analysis. This study provides a reference for the development of anticancer agents targeting the RhoA/ROCK pathway.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.