On plane wave scattering at the piezothermoelastic half-space with impedance boundary condition

IF 2.3 3区 工程技术 Q2 MECHANICS Acta Mechanica Pub Date : 2024-08-23 DOI:10.1007/s00707-024-04061-3
Kirti, Sanjeev A. Sahu
{"title":"On plane wave scattering at the piezothermoelastic half-space with impedance boundary condition","authors":"Kirti,&nbsp;Sanjeev A. Sahu","doi":"10.1007/s00707-024-04061-3","DOIUrl":null,"url":null,"abstract":"<div><p>Piezothermoelasticity and wave interaction studies hold immense significance in designing functional devices ranging from transducers to sensors for a variety of purposes like energy harvesting and structural health monitoring. These applications catalyze interest in this article which addresses the problem of reflection of plane wave at the boundary of piezothermoelastic half-space. Through this study, the effect of impedance parameter on amplitude and energy ratios of the reflected waves is studied. Four wave modes are indicated upon reflection and a linear system of equations is formed to obtain a closed-form expression for amplitude and energy ratios. These equations are solved by suitable mathematical tools leading to expression for amplitude ratios as a function of incidence angle. For a suitable piezothermoelastic medium, the ratios are plotted against incidence angle and the findings are compared for two well-known theories of thermoelasticity, namely, Lord–Shulman (LS theory) and Green–Lindsay (GL theory). The analytical outcomes suggest approximate values of impedance and incidence angle for preferred energy division between reflected waves. It is recognized that adding impedance increases the amplitude of the quasi-longitudinal (qP) wave and decreases that of the quasi-transverse wave, making it suitable for devices that require a more robust qP wave signal detection.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"235 11","pages":"6569 - 6584"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-024-04061-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Piezothermoelasticity and wave interaction studies hold immense significance in designing functional devices ranging from transducers to sensors for a variety of purposes like energy harvesting and structural health monitoring. These applications catalyze interest in this article which addresses the problem of reflection of plane wave at the boundary of piezothermoelastic half-space. Through this study, the effect of impedance parameter on amplitude and energy ratios of the reflected waves is studied. Four wave modes are indicated upon reflection and a linear system of equations is formed to obtain a closed-form expression for amplitude and energy ratios. These equations are solved by suitable mathematical tools leading to expression for amplitude ratios as a function of incidence angle. For a suitable piezothermoelastic medium, the ratios are plotted against incidence angle and the findings are compared for two well-known theories of thermoelasticity, namely, Lord–Shulman (LS theory) and Green–Lindsay (GL theory). The analytical outcomes suggest approximate values of impedance and incidence angle for preferred energy division between reflected waves. It is recognized that adding impedance increases the amplitude of the quasi-longitudinal (qP) wave and decreases that of the quasi-transverse wave, making it suitable for devices that require a more robust qP wave signal detection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带阻抗边界条件的压热弹性半空间的平面波散射
压othermoasticity(压热弹性)和波相互作用研究对于设计从传感器到感应器等各种功能器件(如能量收集和结构健康监测)具有重要意义。这些应用激发了本文的兴趣,本文探讨了平面波在压热弹性半空间边界的反射问题。本文研究了阻抗参数对反射波振幅和能量比的影响。反射波有四种模式,并形成一个线性方程组,以获得振幅和能量比的闭式表达式。通过适当的数学工具对这些方程进行求解,可以得到作为入射角函数的振幅比表达式。对于合适的压热弹性介质,可绘制比率与入射角的关系图,并将结果与两种著名的热弹性理论,即 Lord-Shulman (LS 理论)和 Green-Lindsay (GL 理论)进行比较。分析结果表明,阻抗和入射角的近似值有利于反射波之间的能量分配。人们认识到,增加阻抗会增加准纵波(qP)的振幅,降低准横波的振幅,从而使其适用于需要更强大的 qP 波信号检测的设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Mechanica
Acta Mechanica 物理-力学
CiteScore
4.30
自引率
14.80%
发文量
292
审稿时长
6.9 months
期刊介绍: Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.
期刊最新文献
Size-dependent thermoelastic dissipation and frequency shift in micro/nano cylindrical shell based on surface effect and dual-phase lag heat conduction model Nonlinear free vibrations of sandwich plates with FG GPLR face sheets based on the full layerwise finite element method Investigation of static buckling and bending of nanoplates made of new functionally graded materials considering surface effects on an elastic foundation Estimation of dispersion and attenuation of Rayleigh waves in viscoelastic inhomogeneous layered half-space based on spectral method Airfoil-shaped vortex generators for separation control and drag reduction on wind turbine blades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1