Highly Stable Propane Dehydrogenation on a Self-supporting Single-component Zn2SiO4 Catalyst

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-13 DOI:10.1002/anie.202413297
Zhaohui Liu, Min Mao, Tie Shu, Qingpeng Cheng, Dong Liu, Jianjian Wang, Yun Zhao, Lingmei Liu, Yu Han
{"title":"Highly Stable Propane Dehydrogenation on a Self-supporting Single-component Zn2SiO4 Catalyst","authors":"Zhaohui Liu, Min Mao, Tie Shu, Qingpeng Cheng, Dong Liu, Jianjian Wang, Yun Zhao, Lingmei Liu, Yu Han","doi":"10.1002/anie.202413297","DOIUrl":null,"url":null,"abstract":"Current industrial propane dehydrogenation (PDH) processes predominantly use either toxic Cr-based or expensive Pt-based catalysts, necessitating urgent exploration for alternatives. Herein, we present Zn2SiO4, an easily prepared, cost-effective material, as a highly efficient and stable catalyst for PDH. Uniquely, Zn2SiO4 nanocrystals do not require dispersion on support materials, commonly needed for catalytic active oxide clusters, but function as a self-supporting catalyst instead. During the reaction's induction period, surface Zn species on the Zn2SiO4 crystal reduce to coordinately unsaturated ZnOx single sites, serving as highly active catalytic centers. The Zn2SiO4 catalyst demonstrates a stable performance over 200 hours of PDH operation at 550 °C. We further find that introducing a minuscule amount of CO2 into the propane feed significantly extends the catalyst lifespan to over 2000 hours. This enhancement arises from the special role of CO2 in facilitating the removal of strongly adsorbed H*, preventing the complete reduction of ZnOx. After prolonged reaction, the activity of Zn2SiO4 can be fully restored by etching the surface layer to expose fresh Zn species, available throughout the crystals. The combination of CO2 introduction and catalytic site regeneration strategies is expected to enable a year-long PDH operation using a single batch of Zn2SiO4 catalyst.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202413297","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Current industrial propane dehydrogenation (PDH) processes predominantly use either toxic Cr-based or expensive Pt-based catalysts, necessitating urgent exploration for alternatives. Herein, we present Zn2SiO4, an easily prepared, cost-effective material, as a highly efficient and stable catalyst for PDH. Uniquely, Zn2SiO4 nanocrystals do not require dispersion on support materials, commonly needed for catalytic active oxide clusters, but function as a self-supporting catalyst instead. During the reaction's induction period, surface Zn species on the Zn2SiO4 crystal reduce to coordinately unsaturated ZnOx single sites, serving as highly active catalytic centers. The Zn2SiO4 catalyst demonstrates a stable performance over 200 hours of PDH operation at 550 °C. We further find that introducing a minuscule amount of CO2 into the propane feed significantly extends the catalyst lifespan to over 2000 hours. This enhancement arises from the special role of CO2 in facilitating the removal of strongly adsorbed H*, preventing the complete reduction of ZnOx. After prolonged reaction, the activity of Zn2SiO4 can be fully restored by etching the surface layer to expose fresh Zn species, available throughout the crystals. The combination of CO2 introduction and catalytic site regeneration strategies is expected to enable a year-long PDH operation using a single batch of Zn2SiO4 catalyst.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自支撑单组分 Zn2SiO4 催化剂上的高稳定性丙烷脱氢反应
目前的工业丙烷脱氢(PDH)工艺主要使用有毒的铬基催化剂或昂贵的铂基催化剂,因此迫切需要探索替代品。在本文中,我们介绍了 Zn2SiO4 这种易于制备、成本效益高的材料,它是一种高效稳定的 PDH 催化剂。与众不同的是,Zn2SiO4 纳米晶体不需要分散在催化活性氧化物团簇通常需要的支撑材料上,而是作为一种自支撑催化剂发挥作用。在反应的诱导期,Zn2SiO4 晶体上的表面锌还原成配位不饱和氧化锌单位点,成为高活性催化中心。Zn2SiO4 催化剂在 550 °C、200 小时的 PDH 反应中表现出稳定的性能。我们还发现,在丙烷进料中引入微量的二氧化碳可显著延长催化剂的使用寿命,使其超过 2000 小时。之所以能延长寿命,是因为二氧化碳在促进去除强烈吸附的 H* 方面发挥了特殊作用,从而阻止了氧化锌的完全还原。在长时间反应后,通过蚀刻表层,使整个晶体中的新鲜锌元素暴露出来,就能完全恢复 Zn2SiO4 的活性。二氧化碳导入和催化位点再生策略的结合有望使单批 Zn2SiO4 催化剂实现长达一年的 PDH 运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Confinement effects and manipulation strategies of nanocomposite membranes towards molecular separation. Enhanced Coplanarity and Giant Birefringence in Hydroxypyridinium Nitrate via Hydrogen Bonding between Planar Donors and Planar Acceptors. Location-Specific Microenvironment Modulation Around Single-Atom Metal Sites in Metal-Organic Frameworks for Boosting Catalysis. Biosynthetic Origin of the Methoxy Group in Quinine and Related Alkaloids Bioinspired synthesis of cucurbalsaminones B and C.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1