Greenhouse gas and volatile organic compound emissions of additive-treated whole-plant maize silage: part A—anaerobic fermentation period

IF 5.2 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Chemical and Biological Technologies in Agriculture Pub Date : 2024-09-13 DOI:10.1186/s40538-024-00655-0
Hauke Ferdinand Deeken, Wolfgang Büscher, Manfred Trimborn, Alexander J. Schmithausen, Kirsten Weiß, André Lipski, Gerd-Christian Maack
{"title":"Greenhouse gas and volatile organic compound emissions of additive-treated whole-plant maize silage: part A—anaerobic fermentation period","authors":"Hauke Ferdinand Deeken,&nbsp;Wolfgang Büscher,&nbsp;Manfred Trimborn,&nbsp;Alexander J. Schmithausen,&nbsp;Kirsten Weiß,&nbsp;André Lipski,&nbsp;Gerd-Christian Maack","doi":"10.1186/s40538-024-00655-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Silage emits climate- and environment-relevant gases during fermentation and feed-out periods. This trial aimed to determine the unknown carbon dioxide (CO<sub>2</sub>), methane, nitrous oxide, ethanol, and ethyl acetate emissions of constant maize silage material over both periods. The results will be published in two consecutive articles (Part A: anaerobic fermentation period, Part B: aerobic storage period).</p><h3>Methods</h3><p>The untreated control (CON) was compared with the chemical additive treatment (CHE; 0.5 g sodium benzoate and 0.3 g potassium sorbate per kg fresh matter) and the biological additive treatment (BIO; 10<sup>8</sup> colony-forming units (CFU) <i>Lentilactobacillus buchneri</i> and 10<sup>7</sup> CFU <i>Lactiplantibacillus plantarum</i> per kg fresh matter). Barrel silos (<i>n</i> = 4) were connected to gas bags to quantify gas formation during anaerobic fermentation (30 or 135 ensiling days). Glass jar silos (<i>n</i> = 12) were used for laboratory silage analysis.</p><h3>Results</h3><p>CHE produced significantly (<i>p</i> &lt; 0.05) less gas (6.7 ± 0.3 L per kg dry matter ensiled material (kg<sub>DM</sub>) until ensiling day 14.0 ± 0.0) and ethanol (8.6 ± 1.5 mg kg<sub>DM</sub><sup>–1</sup>) than CON did (8.5 ± 0.2 L kg<sub>DM</sub><sup>–1</sup> until ensiling day 19.5 ± 6.4; 12.2 ± 1.5 (mg ethanol) kg<sub>DM</sub><sup>–1</sup>). BIO indicates prolonged gas formation (9.1 ± 0.9 L kg<sub>DM</sub><sup>–1</sup> until ensiling day 61.3 ± 51.9; 12.0 ± 2.1 mg kg<sub>DM</sub><sup>–1</sup>). CO<sub>2</sub> is the main component of the gas formed. All treatments formed methane and nitrous oxide in small quantities. CON emitted significantly more CO<sub>2</sub>eq emissions than BIO and less than CHE (<i>p</i> &lt; 0.05). Additives had no effect on ethyl acetate gas emissions. For BIO, ethanol concentrations in the material (<i>r</i><sub><i>S</i></sub> = 0.609, <i>p</i> &lt; 0.05) and gas quantities (<i>r</i><sub><i>S</i></sub> = 0.691, <i>p</i> &lt; 0.05) correlate with ethyl acetate gas quantities. All the treatments exhibited decreasing gas and CO<sub>2</sub> quantities, and the dry matter mass increased between ensiling days 14 and 30 (− 0.810 ≤ <i>r</i><sub><i>S</i></sub> ≤ 0.442; <i>p</i> &lt; 0.05 to <i>p</i> = 0.20).</p><h3>Conclusion</h3><p>Silage generates climate- and environmental-relevant gases during fermentation and silage additives affect this pattern. Gas formation exceeds the fixation potential, and the carbon footprint of silage fermentation is negative.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00655-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00655-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Silage emits climate- and environment-relevant gases during fermentation and feed-out periods. This trial aimed to determine the unknown carbon dioxide (CO2), methane, nitrous oxide, ethanol, and ethyl acetate emissions of constant maize silage material over both periods. The results will be published in two consecutive articles (Part A: anaerobic fermentation period, Part B: aerobic storage period).

Methods

The untreated control (CON) was compared with the chemical additive treatment (CHE; 0.5 g sodium benzoate and 0.3 g potassium sorbate per kg fresh matter) and the biological additive treatment (BIO; 108 colony-forming units (CFU) Lentilactobacillus buchneri and 107 CFU Lactiplantibacillus plantarum per kg fresh matter). Barrel silos (n = 4) were connected to gas bags to quantify gas formation during anaerobic fermentation (30 or 135 ensiling days). Glass jar silos (n = 12) were used for laboratory silage analysis.

Results

CHE produced significantly (p < 0.05) less gas (6.7 ± 0.3 L per kg dry matter ensiled material (kgDM) until ensiling day 14.0 ± 0.0) and ethanol (8.6 ± 1.5 mg kgDM–1) than CON did (8.5 ± 0.2 L kgDM–1 until ensiling day 19.5 ± 6.4; 12.2 ± 1.5 (mg ethanol) kgDM–1). BIO indicates prolonged gas formation (9.1 ± 0.9 L kgDM–1 until ensiling day 61.3 ± 51.9; 12.0 ± 2.1 mg kgDM–1). CO2 is the main component of the gas formed. All treatments formed methane and nitrous oxide in small quantities. CON emitted significantly more CO2eq emissions than BIO and less than CHE (p < 0.05). Additives had no effect on ethyl acetate gas emissions. For BIO, ethanol concentrations in the material (rS = 0.609, p < 0.05) and gas quantities (rS = 0.691, p < 0.05) correlate with ethyl acetate gas quantities. All the treatments exhibited decreasing gas and CO2 quantities, and the dry matter mass increased between ensiling days 14 and 30 (− 0.810 ≤ rS ≤ 0.442; p < 0.05 to p = 0.20).

Conclusion

Silage generates climate- and environmental-relevant gases during fermentation and silage additives affect this pattern. Gas formation exceeds the fixation potential, and the carbon footprint of silage fermentation is negative.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
添加剂处理过的全株玉米青贮的温室气体和挥发性有机化合物排放:A 部分--厌氧发酵期
青贮饲料在发酵和出料期间会排放与气候和环境相关的气体。本试验旨在确定恒定玉米青贮饲料在这两个时期的未知二氧化碳(CO2)、甲烷、一氧化二氮、乙醇和乙酸乙酯排放量。试验结果将连续发表在两篇文章中(A 部分:厌氧发酵期,B 部分:好氧储存期)。未经处理的对照组(CON)与化学添加剂处理组(CHE;每公斤鲜物质 0.5 克苯甲酸钠和 0.3 克山梨酸钾)和生物添加剂处理组(BIO;每公斤鲜物质 108 菌落总数(CFU)布氏扁豆乳杆菌和 107 菌落总数(CFU)植物乳杆菌)进行了比较。筒仓(n = 4)与气袋相连,以量化厌氧发酵期间(30 或 135 腌制天)的气体形成。玻璃瓶筒仓(n = 12)用于实验室青贮分析。CHE 产生的气体(直到青贮第 14.0 ± 0.0 天,每公斤干物质青贮材料(kgDM)6.7 ± 0.3 升)和乙醇(8.6 ± 1.5 毫克 kgDM-1)明显少于 CON(直到青贮第 19.5 ± 6.4 天,每公斤干物质青贮材料(kgDM)8.5 ± 0.2 升;每公斤干物质青贮材料(kgDM)12.2 ± 1.5(毫克乙醇)kgDM-1)(p < 0.05)。BIO 表明气体形成时间延长(9.1 ± 0.9 升 kgDM-1,直到屠宰第 61.3 ± 51.9 天;12.0 ± 2.1 毫克 kgDM-1)。二氧化碳是形成气体的主要成分。所有处理都产生了少量甲烷和一氧化二氮。CON 的二氧化碳当量排放量明显高于 BIO,低于 CHE(p < 0.05)。添加剂对乙酸乙酯气体排放没有影响。对于 BIO,材料中的乙醇浓度(rS = 0.609,p < 0.05)和气体数量(rS = 0.691,p < 0.05)与乙酸乙酯气体数量相关。所有处理的气体量和二氧化碳量都在减少,干物质质量在贮藏第 14 天和第 30 天之间增加(- 0.810 ≤ rS ≤ 0.442;p < 0.05 至 p = 0.20)。青贮饲料在发酵过程中会产生与气候和环境相关的气体,青贮饲料添加剂会影响这种模式。气体的形成超过了固定潜力,青贮发酵的碳足迹为负值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical and Biological Technologies in Agriculture
Chemical and Biological Technologies in Agriculture Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
3.00%
发文量
83
审稿时长
15 weeks
期刊介绍: Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture. This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population. Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.
期刊最新文献
Integrated metabolome and transcriptome analyses provide comprehensive insight into dark- and light-responsive mechanisms in Althaea officinalis hairy root cultures Microbiologically modified bioorganic fertilizer and metal-tolerant Bacillus sp. MN54 regulate the nutrient homeostasis and boost phytoextraction efficiency of mustard (Brassica juncea L.) in nickel-contaminated soil Enhanced phytoremediation of Cd-contaminated soil by Solanum nigrum L. through the addition of earthworm and organic wastes Reduction of oxidative damage caused by Fusarium falciforme and Fusarium foetens in schefflera plants using chitosan nanoparticles loaded with l-proline or indole butyric acid The auxin-like effect of substrate and auxin sensitivity of plant modulate the PGPR activity of Lysinibacillus pinottii sp. nov. PB211
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1