AnySkin: Plug-and-play Skin Sensing for Robotic Touch

Raunaq Bhirangi, Venkatesh Pattabiraman, Enes Erciyes, Yifeng Cao, Tess Hellebrekers, Lerrel Pinto
{"title":"AnySkin: Plug-and-play Skin Sensing for Robotic Touch","authors":"Raunaq Bhirangi, Venkatesh Pattabiraman, Enes Erciyes, Yifeng Cao, Tess Hellebrekers, Lerrel Pinto","doi":"arxiv-2409.08276","DOIUrl":null,"url":null,"abstract":"While tactile sensing is widely accepted as an important and useful sensing\nmodality, its use pales in comparison to other sensory modalities like vision\nand proprioception. AnySkin addresses the critical challenges that impede the\nuse of tactile sensing -- versatility, replaceability, and data reusability.\nBuilding on the simplistic design of ReSkin, and decoupling the sensing\nelectronics from the sensing interface, AnySkin simplifies integration making\nit as straightforward as putting on a phone case and connecting a charger.\nFurthermore, AnySkin is the first uncalibrated tactile-sensor with\ncross-instance generalizability of learned manipulation policies. To summarize,\nthis work makes three key contributions: first, we introduce a streamlined\nfabrication process and a design tool for creating an adhesive-free, durable\nand easily replaceable magnetic tactile sensor; second, we characterize slip\ndetection and policy learning with the AnySkin sensor; and third, we\ndemonstrate zero-shot generalization of models trained on one instance of\nAnySkin to new instances, and compare it with popular existing tactile\nsolutions like DIGIT and ReSkin.https://any-skin.github.io/","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While tactile sensing is widely accepted as an important and useful sensing modality, its use pales in comparison to other sensory modalities like vision and proprioception. AnySkin addresses the critical challenges that impede the use of tactile sensing -- versatility, replaceability, and data reusability. Building on the simplistic design of ReSkin, and decoupling the sensing electronics from the sensing interface, AnySkin simplifies integration making it as straightforward as putting on a phone case and connecting a charger. Furthermore, AnySkin is the first uncalibrated tactile-sensor with cross-instance generalizability of learned manipulation policies. To summarize, this work makes three key contributions: first, we introduce a streamlined fabrication process and a design tool for creating an adhesive-free, durable and easily replaceable magnetic tactile sensor; second, we characterize slip detection and policy learning with the AnySkin sensor; and third, we demonstrate zero-shot generalization of models trained on one instance of AnySkin to new instances, and compare it with popular existing tactile solutions like DIGIT and ReSkin.https://any-skin.github.io/
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AnySkin:用于机器人触摸的即插即用皮肤传感技术
虽然触觉传感作为一种重要而有用的传感方式已被广泛接受,但与视觉和本体感觉等其他传感方式相比,其应用却显得微不足道。AnySkin解决了阻碍触觉传感应用的关键难题--多功能性、可替换性和数据可重用性。AnySkin以ReSkin的简洁设计为基础,将传感电子元件与传感接口分离,简化了集成过程,使其就像装上手机壳和连接充电器一样简单。总之,这项工作有三个主要贡献:首先,我们介绍了一种简化的制造工艺和设计工具,用于制造一种无胶、耐用且易于更换的磁性触觉传感器;其次,我们描述了使用AnySkin传感器进行滑动检测和策略学习的特点;第三,我们演示了在AnySkin的一个实例上训练的模型对新实例的零次泛化,并将其与DIGIT和ReSkin等现有流行触觉解决方案进行了比较。https://any-skin.github.io/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMRL: Integrating Visual, Physical, Temporal, and Geometric Representations for Enhanced Food Acquisition Human-Robot Cooperative Piano Playing with Learning-Based Real-Time Music Accompaniment GauTOAO: Gaussian-based Task-Oriented Affordance of Objects Reinforcement Learning with Lie Group Orientations for Robotics Haptic-ACT: Bridging Human Intuition with Compliant Robotic Manipulation via Immersive VR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1