Learning Skateboarding for Humanoid Robots through Massively Parallel Reinforcement Learning

William Thibault, Vidyasagar Rajendran, William Melek, Katja Mombaur
{"title":"Learning Skateboarding for Humanoid Robots through Massively Parallel Reinforcement Learning","authors":"William Thibault, Vidyasagar Rajendran, William Melek, Katja Mombaur","doi":"arxiv-2409.07846","DOIUrl":null,"url":null,"abstract":"Learning-based methods have proven useful at generating complex motions for\nrobots, including humanoids. Reinforcement learning (RL) has been used to learn\nlocomotion policies, some of which leverage a periodic reward formulation. This\nwork extends the periodic reward formulation of locomotion to skateboarding for\nthe REEM-C robot. Brax/MJX is used to implement the RL problem to achieve fast\ntraining. Initial results in simulation are presented with hardware experiments\nin progress.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning-based methods have proven useful at generating complex motions for robots, including humanoids. Reinforcement learning (RL) has been used to learn locomotion policies, some of which leverage a periodic reward formulation. This work extends the periodic reward formulation of locomotion to skateboarding for the REEM-C robot. Brax/MJX is used to implement the RL problem to achieve fast training. Initial results in simulation are presented with hardware experiments in progress.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过大规模并行强化学习为仿人机器人学习滑板运动
事实证明,基于学习的方法有助于为机器人(包括人形机器人)生成复杂的运动。强化学习(RL)已被用于学习运动策略,其中一些策略利用了周期性奖励公式。本研究将运动的周期性奖励公式扩展到 REEM-C 机器人的滑板运动。Brax/MJX 用于实现 RL 问题,以实现快速训练。本文介绍了仿真的初步结果,硬件实验正在进行中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMRL: Integrating Visual, Physical, Temporal, and Geometric Representations for Enhanced Food Acquisition Human-Robot Cooperative Piano Playing with Learning-Based Real-Time Music Accompaniment GauTOAO: Gaussian-based Task-Oriented Affordance of Objects Reinforcement Learning with Lie Group Orientations for Robotics Haptic-ACT: Bridging Human Intuition with Compliant Robotic Manipulation via Immersive VR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1