Wassila Sefari, Ali Zazoua, Helim Rabiaa, Hafsa Korri-Youssoufi
{"title":"Bio-Based Materials for Electrochemical Detection of Bisphenol A","authors":"Wassila Sefari, Ali Zazoua, Helim Rabiaa, Hafsa Korri-Youssoufi","doi":"10.1149/1945-7111/ad6eb8","DOIUrl":null,"url":null,"abstract":"Bisphenol A is a widely used endocrine disruptor known for its toxicity and prevalence in the environment. It contaminates drinking water, especially when plastic bottles are exposed to Sunlight. Rapid, on-site detection of BPA in drinking water is crucial for protecting human health and the environment. Herein, we developed an electrochemical sensor for detecting and monitoring bisphenol A in water bodies utilizing biobased materials. The device uses a biopolymeric membrane with agarose and gelified green tea tannins (GT/Agar). A sensitive part was made using this natural composite due to its high ability to attach bisphenol A to tannin monomers. Green tea tannins were purified and characterized through HPLC, FTIR, SEM, and AFM. The electrochemical activity of the GT-Agar/Au sensor is also evaluated by electrochemical impedance spectroscopy, cyclic voltammetry, square wave voltammetry and scan rate. Based on its redox signal under the optimal experimental conditions, this sensor has a detection range of 10<sup>−16 </sup>M to 10<sup>−4 </sup>M, a limit of detection of 1.52 to 10<sup>−17 </sup>M and very high selectivity. The proposed sensor successfully determined BPA levels from ultra-trace concentrations in bottled water samples, achieving satisfactory recovery rates. Compared to the results obtained using HPLC, it demonstrates high reliability.<inline-formula>\n<inline-graphic xlink:href=\"jesad6eb8-ga.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"99 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad6eb8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Bisphenol A is a widely used endocrine disruptor known for its toxicity and prevalence in the environment. It contaminates drinking water, especially when plastic bottles are exposed to Sunlight. Rapid, on-site detection of BPA in drinking water is crucial for protecting human health and the environment. Herein, we developed an electrochemical sensor for detecting and monitoring bisphenol A in water bodies utilizing biobased materials. The device uses a biopolymeric membrane with agarose and gelified green tea tannins (GT/Agar). A sensitive part was made using this natural composite due to its high ability to attach bisphenol A to tannin monomers. Green tea tannins were purified and characterized through HPLC, FTIR, SEM, and AFM. The electrochemical activity of the GT-Agar/Au sensor is also evaluated by electrochemical impedance spectroscopy, cyclic voltammetry, square wave voltammetry and scan rate. Based on its redox signal under the optimal experimental conditions, this sensor has a detection range of 10−16 M to 10−4 M, a limit of detection of 1.52 to 10−17 M and very high selectivity. The proposed sensor successfully determined BPA levels from ultra-trace concentrations in bottled water samples, achieving satisfactory recovery rates. Compared to the results obtained using HPLC, it demonstrates high reliability.
双酚 A 是一种广泛使用的内分泌干扰物,以其毒性和在环境中的普遍存在而闻名。它污染饮用水,尤其是当塑料瓶暴露在阳光下时。快速现场检测饮用水中的双酚 A 对保护人类健康和环境至关重要。在此,我们利用生物基材料开发了一种用于检测和监测水体中双酚 A 的电化学传感器。该装置使用了含有琼脂糖和凝胶绿茶单宁(GT/Agar)的生物高分子膜。由于这种天然复合材料具有很强的将双酚 A 附着在单宁酸单体上的能力,因此使用这种天然复合材料制作了一个敏感部位。对绿茶单宁进行了纯化,并通过 HPLC、傅立叶变换红外光谱、扫描电镜和原子力显微镜对其进行了表征。还通过电化学阻抗谱、循环伏安法、方波伏安法和扫描速率评估了 GT-Agar/Au 传感器的电化学活性。根据其在最佳实验条件下的氧化还原信号,该传感器的检测范围为 10-16 M 至 10-4 M,检测限为 1.52 至 10-17 M,并具有极高的选择性。该传感器成功测定了瓶装水样品中超痕量浓度的双酚 A 含量,回收率令人满意。与使用高效液相色谱法得出的结果相比,它具有很高的可靠性。
期刊介绍:
The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.