Enabling Cost-Effective UI Automation Testing with Retrieval-Based LLMs: A Case Study in WeChat

Sidong Feng, Haochuan Lu, Jianqin Jiang, Ting Xiong, Likun Huang, Yinglin Liang, Xiaoqin Li, Yuetang Deng, Aldeida Aleti
{"title":"Enabling Cost-Effective UI Automation Testing with Retrieval-Based LLMs: A Case Study in WeChat","authors":"Sidong Feng, Haochuan Lu, Jianqin Jiang, Ting Xiong, Likun Huang, Yinglin Liang, Xiaoqin Li, Yuetang Deng, Aldeida Aleti","doi":"arxiv-2409.07829","DOIUrl":null,"url":null,"abstract":"UI automation tests play a crucial role in ensuring the quality of mobile\napplications. Despite the growing popularity of machine learning techniques to\ngenerate these tests, they still face several challenges, such as the mismatch\nof UI elements. The recent advances in Large Language Models (LLMs) have\naddressed these issues by leveraging their semantic understanding capabilities.\nHowever, a significant gap remains in applying these models to industrial-level\napp testing, particularly in terms of cost optimization and knowledge\nlimitation. To address this, we introduce CAT to create cost-effective UI\nautomation tests for industry apps by combining machine learning and LLMs with\nbest practices. Given the task description, CAT employs Retrieval Augmented\nGeneration (RAG) to source examples of industrial app usage as the few-shot\nlearning context, assisting LLMs in generating the specific sequence of\nactions. CAT then employs machine learning techniques, with LLMs serving as a\ncomplementary optimizer, to map the target element on the UI screen. Our\nevaluations on the WeChat testing dataset demonstrate the CAT's performance and\ncost-effectiveness, achieving 90% UI automation with $0.34 cost, outperforming\nthe state-of-the-art. We have also integrated our approach into the real-world\nWeChat testing platform, demonstrating its usefulness in detecting 141 bugs and\nenhancing the developers' testing process.","PeriodicalId":501278,"journal":{"name":"arXiv - CS - Software Engineering","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

UI automation tests play a crucial role in ensuring the quality of mobile applications. Despite the growing popularity of machine learning techniques to generate these tests, they still face several challenges, such as the mismatch of UI elements. The recent advances in Large Language Models (LLMs) have addressed these issues by leveraging their semantic understanding capabilities. However, a significant gap remains in applying these models to industrial-level app testing, particularly in terms of cost optimization and knowledge limitation. To address this, we introduce CAT to create cost-effective UI automation tests for industry apps by combining machine learning and LLMs with best practices. Given the task description, CAT employs Retrieval Augmented Generation (RAG) to source examples of industrial app usage as the few-shot learning context, assisting LLMs in generating the specific sequence of actions. CAT then employs machine learning techniques, with LLMs serving as a complementary optimizer, to map the target element on the UI screen. Our evaluations on the WeChat testing dataset demonstrate the CAT's performance and cost-effectiveness, achieving 90% UI automation with $0.34 cost, outperforming the state-of-the-art. We have also integrated our approach into the real-world WeChat testing platform, demonstrating its usefulness in detecting 141 bugs and enhancing the developers' testing process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于检索的 LLM 实现经济高效的用户界面自动化测试:微信案例研究
用户界面自动化测试在确保移动应用程序的质量方面发挥着至关重要的作用。尽管用于生成这些测试的机器学习技术越来越受欢迎,但它们仍然面临着一些挑战,例如 UI 元素的不匹配。然而,在将这些模型应用于工业级应用测试方面仍存在巨大差距,尤其是在成本优化和知识限制方面。为了解决这个问题,我们引入了 CAT,通过将机器学习和 LLM 与最佳实践相结合,为行业应用程序创建经济高效的用户界面自动化测试。给定任务描述后,CAT 采用检索增强生成(RAG)技术,将行业应用程序的使用实例作为少数几个可识别的上下文,协助 LLM 生成特定的操作序列。然后,CAT 采用机器学习技术,LLM 作为辅助优化器,将目标元素映射到 UI 屏幕上。在微信测试数据集上进行的评估证明了 CAT 的性能和成本效益,它以 0.34 美元的成本实现了 90% 的用户界面自动化,超越了最先进的技术。我们还将我们的方法集成到了现实世界的微信测试平台中,证明了它在检测 141 个错误和增强开发人员测试流程方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Promise and Peril of Collaborative Code Generation Models: Balancing Effectiveness and Memorization Shannon Entropy is better Feature than Category and Sentiment in User Feedback Processing Motivations, Challenges, Best Practices, and Benefits for Bots and Conversational Agents in Software Engineering: A Multivocal Literature Review A Taxonomy of Self-Admitted Technical Debt in Deep Learning Systems Investigating team maturity in an agile automotive reorganization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1