Generative AI for Requirements Engineering: A Systematic Literature Review

Haowei Cheng, Jati H. Husen, Sien Reeve Peralta, Bowen Jiang, Nobukazu Yoshioka, Naoyasu Ubayashi, Hironori Washizaki
{"title":"Generative AI for Requirements Engineering: A Systematic Literature Review","authors":"Haowei Cheng, Jati H. Husen, Sien Reeve Peralta, Bowen Jiang, Nobukazu Yoshioka, Naoyasu Ubayashi, Hironori Washizaki","doi":"arxiv-2409.06741","DOIUrl":null,"url":null,"abstract":"Context: Generative AI (GenAI) has emerged as a transformative tool in\nsoftware engineering, with requirements engineering (RE) actively exploring its\npotential to revolutionize processes and outcomes. The integration of GenAI\ninto RE presents both promising opportunities and significant challenges that\nnecessitate systematic analysis and evaluation. Objective: This paper presents\na comprehensive systematic literature review (SLR) analyzing state-of-the-art\napplications and innovative proposals leveraging GenAI in RE. It surveys\nstudies focusing on the utilization of GenAI to enhance RE processes while\nidentifying key challenges and opportunities in this rapidly evolving field.\nMethod: A rigorous SLR methodology was used to analyze 27 carefully selected\nprimary studies in-depth. The review examined research questions pertaining to\nthe application of GenAI across various RE phases, the models and techniques\nused, and the challenges encountered in implementation and adoption. Results:\nThe most salient findings include i) a predominant focus on the early stages of\nRE, particularly the elicitation and analysis of requirements, indicating\npotential for expansion into later phases; ii) the dominance of large language\nmodels, especially the GPT series, highlighting the need for diverse AI\napproaches; and iii) persistent challenges in domain-specific applications and\nthe interpretability of AI-generated outputs, underscoring areas requiring\nfurther research and development. Conclusions: The results highlight the\ncritical need for comprehensive evaluation frameworks, improved human-AI\ncollaboration models, and thorough consideration of ethical implications in\nGenAI-assisted RE. Future research should prioritize extending GenAI\napplications across the entire RE lifecycle, enhancing domain-specific\ncapabilities, and developing strategies for responsible AI integration in RE\npractices.","PeriodicalId":501278,"journal":{"name":"arXiv - CS - Software Engineering","volume":"214 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Context: Generative AI (GenAI) has emerged as a transformative tool in software engineering, with requirements engineering (RE) actively exploring its potential to revolutionize processes and outcomes. The integration of GenAI into RE presents both promising opportunities and significant challenges that necessitate systematic analysis and evaluation. Objective: This paper presents a comprehensive systematic literature review (SLR) analyzing state-of-the-art applications and innovative proposals leveraging GenAI in RE. It surveys studies focusing on the utilization of GenAI to enhance RE processes while identifying key challenges and opportunities in this rapidly evolving field. Method: A rigorous SLR methodology was used to analyze 27 carefully selected primary studies in-depth. The review examined research questions pertaining to the application of GenAI across various RE phases, the models and techniques used, and the challenges encountered in implementation and adoption. Results: The most salient findings include i) a predominant focus on the early stages of RE, particularly the elicitation and analysis of requirements, indicating potential for expansion into later phases; ii) the dominance of large language models, especially the GPT series, highlighting the need for diverse AI approaches; and iii) persistent challenges in domain-specific applications and the interpretability of AI-generated outputs, underscoring areas requiring further research and development. Conclusions: The results highlight the critical need for comprehensive evaluation frameworks, improved human-AI collaboration models, and thorough consideration of ethical implications in GenAI-assisted RE. Future research should prioritize extending GenAI applications across the entire RE lifecycle, enhancing domain-specific capabilities, and developing strategies for responsible AI integration in RE practices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于需求工程的生成式人工智能:系统文献综述
背景:生成式人工智能(GenAI)已成为软件工程领域的变革性工具,而需求工程(RE)也在积极探索其彻底改变流程和结果的潜力。将 GenAI 整合到 RE 中既带来了大有可为的机遇,也面临着巨大的挑战,需要进行系统分析和评估。目标:本文介绍了全面系统的文献综述(SLR),分析了在 RE 中利用 GenAI 的最新应用和创新提案。它调查了有关利用 GenAI 增强可再生能源流程的研究,同时确定了这一快速发展领域的关键挑战和机遇:方法:采用严格的 SLR 方法深入分析了精心挑选的 27 项主要研究。方法:采用严格的 SLR 方法深入分析了精心挑选的 27 项主要研究,审查了与 GenAI 在可再生能源各阶段的应用、所使用的模型和技术以及在实施和采用过程中遇到的挑战有关的研究问题。结果:最突出的发现包括 i) 主要集中在 RE 的早期阶段,特别是需求的激发和分析,这表明有可能扩展到后期阶段;ii) 大型语言模型,特别是 GPT 系列占主导地位,这凸显了对多样化人工智能方法的需求;iii) 在特定领域应用和人工智能生成输出的可解释性方面持续存在挑战,这强调了需要进一步研究和开发的领域。结论:研究结果突出表明,在 GenAI 辅助 RE 中,迫切需要全面的评估框架、改进的人类-人工智能合作模型以及对伦理影响的全面考虑。未来的研究应优先考虑将 GenAI 应用扩展到整个可再生能源生命周期,增强特定领域的能力,并为负责任地将人工智能整合到可再生能源实践中制定战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Promise and Peril of Collaborative Code Generation Models: Balancing Effectiveness and Memorization Shannon Entropy is better Feature than Category and Sentiment in User Feedback Processing Motivations, Challenges, Best Practices, and Benefits for Bots and Conversational Agents in Software Engineering: A Multivocal Literature Review A Taxonomy of Self-Admitted Technical Debt in Deep Learning Systems Investigating team maturity in an agile automotive reorganization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1