RePlay: a Recommendation Framework for Experimentation and Production Use

Alexey Vasilev, Anna Volodkevich, Denis Kulandin, Tatiana Bysheva, Anton Klenitskiy
{"title":"RePlay: a Recommendation Framework for Experimentation and Production Use","authors":"Alexey Vasilev, Anna Volodkevich, Denis Kulandin, Tatiana Bysheva, Anton Klenitskiy","doi":"arxiv-2409.07272","DOIUrl":null,"url":null,"abstract":"Using a single tool to build and compare recommender systems significantly\nreduces the time to market for new models. In addition, the comparison results\nwhen using such tools look more consistent. This is why many different tools\nand libraries for researchers in the field of recommendations have recently\nappeared. Unfortunately, most of these frameworks are aimed primarily at\nresearchers and require modification for use in production due to the inability\nto work on large datasets or an inappropriate architecture. In this demo, we\npresent our open-source toolkit RePlay - a framework containing an end-to-end\npipeline for building recommender systems, which is ready for production use.\nRePlay also allows you to use a suitable stack for the pipeline on each stage:\nPandas, Polars, or Spark. This allows the library to scale computations and\ndeploy to a cluster. Thus, RePlay allows data scientists to easily move from\nresearch mode to production mode using the same interfaces.","PeriodicalId":501278,"journal":{"name":"arXiv - CS - Software Engineering","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using a single tool to build and compare recommender systems significantly reduces the time to market for new models. In addition, the comparison results when using such tools look more consistent. This is why many different tools and libraries for researchers in the field of recommendations have recently appeared. Unfortunately, most of these frameworks are aimed primarily at researchers and require modification for use in production due to the inability to work on large datasets or an inappropriate architecture. In this demo, we present our open-source toolkit RePlay - a framework containing an end-to-end pipeline for building recommender systems, which is ready for production use. RePlay also allows you to use a suitable stack for the pipeline on each stage: Pandas, Polars, or Spark. This allows the library to scale computations and deploy to a cluster. Thus, RePlay allows data scientists to easily move from research mode to production mode using the same interfaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RePlay:用于实验和生产的推荐框架
使用单一工具来构建和比较推荐系统可以大大缩短新模型的上市时间。此外,使用此类工具得出的比较结果也更加一致。这就是为什么最近出现了许多不同的工具和库,供推荐领域的研究人员使用。遗憾的是,这些框架大多主要面向研究人员,由于无法处理大型数据集或架构不合适,在生产中使用时需要进行修改。在本演示中,我们将介绍我们的开源工具包 RePlay--一个包含用于构建推荐系统的端到端流水线的框架,可随时用于生产。这样,该库就可以扩展计算并部署到集群中。因此,RePlay 允许数据科学家使用相同的接口轻松地从研究模式转向生产模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Promise and Peril of Collaborative Code Generation Models: Balancing Effectiveness and Memorization Shannon Entropy is better Feature than Category and Sentiment in User Feedback Processing Motivations, Challenges, Best Practices, and Benefits for Bots and Conversational Agents in Software Engineering: A Multivocal Literature Review A Taxonomy of Self-Admitted Technical Debt in Deep Learning Systems Investigating team maturity in an agile automotive reorganization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1