Nicola Rinaldi;Alexander May;Mathias Rommel;Rosalba Liguori;Alfredo Rubino;Gian Domenico Licciardo;Luigi Di Benedetto
{"title":"A 4H-SiC NMOSFET-Based Temperature Sensor Operating Between 14K and 481 K","authors":"Nicola Rinaldi;Alexander May;Mathias Rommel;Rosalba Liguori;Alfredo Rubino;Gian Domenico Licciardo;Luigi Di Benedetto","doi":"10.1109/LED.2024.3459049","DOIUrl":null,"url":null,"abstract":"The experimental characteristics of a temperature sensor based on a 4H-SiC diode-connected lateral NMOSFET are shown in the range between 14K and 481K. The device is fully compatible with 4H-SiC CMOS technology. The analysis of the sensor characteristics reveals a main temperature dependence on the threshold voltage compared to the channel mobility. Due to the oxide/semiconductor interface traps, the sensor characteristic is divided in three temperature ranges to obtain a good linearity: in 14K \n<inline-formula> <tex-math>$\\leq $ </tex-math></inline-formula>\n T \n<inline-formula> <tex-math>$\\leq 200$ </tex-math></inline-formula>\nK, the sensitivity is 53.46mV/K, the rms error is 5.49K and the coefficient of determination is 0.9927 for a bias current of \n<inline-formula> <tex-math>$1.59\\mu $ </tex-math></inline-formula>\nA; instead, a current of \n<inline-formula> <tex-math>$100\\mu $ </tex-math></inline-formula>\nA permits to have a maximum coefficient of determination of 0.9708 with a sensitivity of 29.9mV/K for 200K < T \n<inline-formula> <tex-math>$\\leq 394$ </tex-math></inline-formula>\nK, and a linearity of 0.9926 with a sensitivity of 13.72mV/K at T >394K. Finally, for currents between 870nA and \n<inline-formula> <tex-math>$9\\mu $ </tex-math></inline-formula>\nA the linearity is higher than 0.95 in all temperature ranges.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2181-2184"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10679237","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10679237/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The experimental characteristics of a temperature sensor based on a 4H-SiC diode-connected lateral NMOSFET are shown in the range between 14K and 481K. The device is fully compatible with 4H-SiC CMOS technology. The analysis of the sensor characteristics reveals a main temperature dependence on the threshold voltage compared to the channel mobility. Due to the oxide/semiconductor interface traps, the sensor characteristic is divided in three temperature ranges to obtain a good linearity: in 14K
$\leq $
T
$\leq 200$
K, the sensitivity is 53.46mV/K, the rms error is 5.49K and the coefficient of determination is 0.9927 for a bias current of
$1.59\mu $
A; instead, a current of
$100\mu $
A permits to have a maximum coefficient of determination of 0.9708 with a sensitivity of 29.9mV/K for 200K < T
$\leq 394$
K, and a linearity of 0.9926 with a sensitivity of 13.72mV/K at T >394K. Finally, for currents between 870nA and
$9\mu $
A the linearity is higher than 0.95 in all temperature ranges.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.