X-Ray Detector With Internal Gain Based on a SiC npn Structure

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-08-29 DOI:10.1109/LED.2024.3451623
Jing Wang;Liang Chen;Song Bai;Leidang Zhou;Fangbao Wang;Silong Zhang;Tingting Fan;Runhua Huang;Shaohua Yang;Geng Tian;Xiaoping Ouyang
{"title":"X-Ray Detector With Internal Gain Based on a SiC npn Structure","authors":"Jing Wang;Liang Chen;Song Bai;Leidang Zhou;Fangbao Wang;Silong Zhang;Tingting Fan;Runhua Huang;Shaohua Yang;Geng Tian;Xiaoping Ouyang","doi":"10.1109/LED.2024.3451623","DOIUrl":null,"url":null,"abstract":"A two-terminal npn device based on 4H-SiC has been employed as a radiation detector for the first time. This device was designed as a vertical npn structure with a sensitive area of up to 1 cm2, and the thickness of the sensitive layer was about \n<inline-formula> <tex-math>$30~\\mu $ </tex-math></inline-formula>\nm. The detector exhibited a low dark current of \n<inline-formula> <tex-math>$\\sim ~0.12$ </tex-math></inline-formula>\n nA\n<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula>\ncm\n<inline-formula> <tex-math>$^{-{2}}$ </tex-math></inline-formula>\n with a fully depleted sensitive region at 200 V. The sensitivity of unit area of the detector achieved \n<inline-formula> <tex-math>$36.67~\\mu $ </tex-math></inline-formula>\nC\n<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula>\nGy\n<inline-formula> <tex-math>$^{-{1}} \\cdot $ </tex-math></inline-formula>\ncm\n<inline-formula> <tex-math>$^{-{2}}$ </tex-math></inline-formula>\n (\n<inline-formula> <tex-math>$28.09~\\mu $ </tex-math></inline-formula>\nA @ 0.766 Gy/s) to X-ray illumination (generated by bremsstrahlung with a tungsten target with tube voltage 30 kV) at 200 V, which was attributed to the amplification mechanism of the npn structure. Compared with the response characteristics of a SiC-PiN detector with the same sensitive volume, the gain of the two-terminal SiC npn detector was estimated to be 11.46 at 200 V. Specifically, the internal gain of the detector increased with the X-ray dose rate, where the X-ray photocurrent worked as the base current in the BJT devices. The internal gain also increased with the bias voltage due to the Early effect. Moreover, the two-terminal SiC npn detectors had a good switching response to X-rays and showed great potential in the applications of radiation detection.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2142-2145"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10659085/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A two-terminal npn device based on 4H-SiC has been employed as a radiation detector for the first time. This device was designed as a vertical npn structure with a sensitive area of up to 1 cm2, and the thickness of the sensitive layer was about $30~\mu $ m. The detector exhibited a low dark current of $\sim ~0.12$ nA $\cdot $ cm $^{-{2}}$ with a fully depleted sensitive region at 200 V. The sensitivity of unit area of the detector achieved $36.67~\mu $ C $\cdot $ Gy $^{-{1}} \cdot $ cm $^{-{2}}$ ( $28.09~\mu $ A @ 0.766 Gy/s) to X-ray illumination (generated by bremsstrahlung with a tungsten target with tube voltage 30 kV) at 200 V, which was attributed to the amplification mechanism of the npn structure. Compared with the response characteristics of a SiC-PiN detector with the same sensitive volume, the gain of the two-terminal SiC npn detector was estimated to be 11.46 at 200 V. Specifically, the internal gain of the detector increased with the X-ray dose rate, where the X-ray photocurrent worked as the base current in the BJT devices. The internal gain also increased with the bias voltage due to the Early effect. Moreover, the two-terminal SiC npn detectors had a good switching response to X-rays and showed great potential in the applications of radiation detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于碳化硅 npn 结构的具有内部增益的 X 射线探测器
基于 4H-SiC 的双端 npn 器件首次被用作辐射探测器。该器件设计为垂直 npn 结构,灵敏区面积达 1 cm2,灵敏层厚度约为 $30~\mu$m。\cdot $ cm $^{-{2}}$ ( $28.09~\mu $ A @ 0.766 Gy/s) ,这归功于 npn 结构的放大机制。与具有相同灵敏体积的 SiC-PiN 检测器的响应特性相比,在 200 V 电压下,双端 SiC npn 检测器的增益估计为 11.46。具体而言,检测器的内部增益随 X 射线剂量率的增加而增加,其中 X 射线光电流在 BJT 器件中起基极电流的作用。由于厄尔效应,内部增益也随偏置电压的增加而增加。此外,双端 SiC npn 探测器对 X 射线具有良好的开关响应,在辐射探测应用中显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Table of Contents Front Cover IEEE Electron Device Letters Publication Information IEEE Electron Device Letters Information for Authors Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1