Optimization of Programming Pulse Shape for Vertical NAND Flash Memory Using Neural Networks

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-08-28 DOI:10.1109/LED.2024.3451430
Sung-Ho Park;Jaehyeon Kim;Jonghyun Ko;Jiseong Im;Yeongheon Yang;Jae-Joon Kim;Jong-Ho Lee
{"title":"Optimization of Programming Pulse Shape for Vertical NAND Flash Memory Using Neural Networks","authors":"Sung-Ho Park;Jaehyeon Kim;Jonghyun Ko;Jiseong Im;Yeongheon Yang;Jae-Joon Kim;Jong-Ho Lee","doi":"10.1109/LED.2024.3451430","DOIUrl":null,"url":null,"abstract":"We optimize the shape of the pulse to maximally increase threshold voltage (\n<inline-formula> <tex-math>${V}_{\\text {th}}\\text {)}$ </tex-math></inline-formula>\n during the incremental step pulse programming (ISPP) of vertical NAND (V-NAND) flash memory using neural networks (NNs). NN is trained using data on the increase in \n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n of commercial V-NAND flash memory in response to randomly shaped programming pulses (PPs). The trained NN is utilized to optimize the shape of the PP. The principle behind the improvement in \n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n increase due to the optimized PP, as well as the improvement results, are confirmed through measurements. When the optimized PP is applied to ISPP operation, it results in a 37% increase in ISPP slope. Furthermore, the optimized PP exhibits lower program disturbance, indicating the potential for faster programming with lower energy consumption.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2102-2105"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10654387/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We optimize the shape of the pulse to maximally increase threshold voltage ( ${V}_{\text {th}}\text {)}$ during the incremental step pulse programming (ISPP) of vertical NAND (V-NAND) flash memory using neural networks (NNs). NN is trained using data on the increase in ${V}_{\text {th}}$ of commercial V-NAND flash memory in response to randomly shaped programming pulses (PPs). The trained NN is utilized to optimize the shape of the PP. The principle behind the improvement in ${V}_{\text {th}}$ increase due to the optimized PP, as well as the improvement results, are confirmed through measurements. When the optimized PP is applied to ISPP operation, it results in a 37% increase in ISPP slope. Furthermore, the optimized PP exhibits lower program disturbance, indicating the potential for faster programming with lower energy consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络优化垂直 NAND 闪存的编程脉冲形状
在垂直 NAND(V-NAND)闪存的增量阶跃脉冲编程(ISPP)过程中,我们利用神经网络(NN)优化脉冲形状,以最大限度地提高阈值电压(${V}_\text {th}}\text {)}$。神经网络使用商用 V-NAND 闪存的 ${V}_{text {th}}$ 在随机编程脉冲 (PP) 作用下的增加数据进行训练。经过训练的 NN 可用于优化 PP 的形状。通过测量证实了优化后的PP能改善${V}_{text {th}}$ 增加的原理以及改善结果。将优化后的PP应用于ISPP运行时,ISPP斜率提高了37%。此外,优化后的PP显示出更低的程序干扰,这表明编程速度更快,能耗更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
IEEE Electron Device Letters Information for Authors Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices IEEE Transactions on Electron Devices Table of Contents Blank Page Call for Nominations for Editor-in-Chief
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1