Macroinvertebrates but Not Diatoms Are Affected by Streamflow Alteration Below Hydropower Diversions

IF 2.5 3区 环境科学与生态学 Q2 ECOLOGY Ecohydrology Pub Date : 2024-09-05 DOI:10.1002/eco.2712
Daniel Spitale, Marco Fezzi, Nadia Zorzi, Elisabeth Slomp, Sandro Rigotti, Alex Borrini, Olena Bilous, Marco Cantonati
{"title":"Macroinvertebrates but Not Diatoms Are Affected by Streamflow Alteration Below Hydropower Diversions","authors":"Daniel Spitale, Marco Fezzi, Nadia Zorzi, Elisabeth Slomp, Sandro Rigotti, Alex Borrini, Olena Bilous, Marco Cantonati","doi":"10.1002/eco.2712","DOIUrl":null,"url":null,"abstract":"River regulation due to dams and other intake structures has impacted the hydrology, water quality and biology of rivers worldwide. The release of minimum flows still represents the strategy aimed at maintaining certain aspects of the original flow patterns. However, there remains a limited understanding of the consequences of artificially induced flows on water quality and aquatic life across various types of rivers. This study was conducted in Trentino (south‐eastern Alps, Italy) in 60 perennial river reaches (400–2005 m a.s.l.), all located downstream of water abstractions for different hydropower plants. The main goal of this research was to compare the effect of different residual flows on macroinvertebrates and diatoms. The overall effect of discharge was low but still significant only for macroinvertebrates, whereas diatoms were affected mostly by the water chemistry. Both groups responded to the substrate composition and to the hydromorphology, which in turn resulted to be strongly correlated. The biotic indices, originally developed to respond to pollution, were unaffected by the flow reduction, raising concerns about the potential consequences that assessment based on this approach may have on the evaluation of ecological flow. This study emphasizes the importance of considering the broader ecological context in which flow alterations occur, particularly the interaction of hydromorphology and substrate, in understanding their impact on aquatic biota.","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/eco.2712","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

River regulation due to dams and other intake structures has impacted the hydrology, water quality and biology of rivers worldwide. The release of minimum flows still represents the strategy aimed at maintaining certain aspects of the original flow patterns. However, there remains a limited understanding of the consequences of artificially induced flows on water quality and aquatic life across various types of rivers. This study was conducted in Trentino (south‐eastern Alps, Italy) in 60 perennial river reaches (400–2005 m a.s.l.), all located downstream of water abstractions for different hydropower plants. The main goal of this research was to compare the effect of different residual flows on macroinvertebrates and diatoms. The overall effect of discharge was low but still significant only for macroinvertebrates, whereas diatoms were affected mostly by the water chemistry. Both groups responded to the substrate composition and to the hydromorphology, which in turn resulted to be strongly correlated. The biotic indices, originally developed to respond to pollution, were unaffected by the flow reduction, raising concerns about the potential consequences that assessment based on this approach may have on the evaluation of ecological flow. This study emphasizes the importance of considering the broader ecological context in which flow alterations occur, particularly the interaction of hydromorphology and substrate, in understanding their impact on aquatic biota.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型无脊椎动物而非硅藻会受到水电引水渠下游水流变化的影响
大坝和其他取水结构对河流的调节影响了全世界河流的水文、水质和生物。释放最小流量仍然是旨在保持原有流量模式某些方面的策略。然而,人们对人工诱导流量对各类河流的水质和水生生物的影响的了解仍然有限。这项研究在特伦蒂诺(意大利阿尔卑斯山东南部)的 60 条常年河流(海拔 400 至 2005 米)中进行,这些河流都位于不同水电站取水口的下游。这项研究的主要目的是比较不同剩余流量对大型无脊椎动物和硅藻的影响。排水量的总体影响较小,但仅对大型无脊椎动物有显著影响,而硅藻则主要受到水化学的影响。这两类生物都对底质成分和水文形态做出了反应,而底质成分和水文形态又与底质成分和水文形态密切相关。最初为应对污染而开发的生物指数不受流量减少的影响,这引起了人们对基于这种方法的评估可能对生态流量评估产生的潜在后果的关注。这项研究强调,在了解水流对水生生物群的影响时,必须考虑到水流发生变化时更广泛的生态环境,特别是水文形态和底质的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecohydrology
Ecohydrology 环境科学-生态学
CiteScore
5.10
自引率
7.70%
发文量
116
审稿时长
24 months
期刊介绍: Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management. Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.
期刊最新文献
Issue Information Temperature-driven convergence and divergence of ecohydrological dynamics in the ecosystems of a sky island mountain range Issue Information Soil Building and Capillary Barrier–Enhanced Water Availability Help Explain Pisonia grandis and Other Atoll Native's Tolerance for Variable Precipitation Regimes Analysis of Research Hot Spots in Chinese and International English Ecohydrological Literature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1