Eutrophication of Lakes: From Global Process to Regional Implication in the Kola Arctic Region

IF 2.5 3区 环境科学与生态学 Q2 ECOLOGY Ecohydrology Pub Date : 2024-09-02 DOI:10.1002/eco.2713
Tatiana I. Moiseenko, Maria M. Bazova
{"title":"Eutrophication of Lakes: From Global Process to Regional Implication in the Kola Arctic Region","authors":"Tatiana I. Moiseenko, Maria M. Bazova","doi":"10.1002/eco.2713","DOIUrl":null,"url":null,"abstract":"Eutrophication of water bodies is analysed as a global process. The volumes of globally increasing use of nitrogen and phosphorus are demonstrated, with the dispersion of these elements leading to increased nutrient contents in lakes and rivers. Results of original studies on remote lakes in the Arctic zone indicate that the content of nutrients in these lakes has increased over the past decades. Concentrations of nitrogen, phosphorus and organic matter in lake waters tend to increase in the absence of anthropogenic effects. Simultaneously, the silicon concentrations were found to decrease because of the consumption by diatoms. Low concentrations of bioavailable nutrients confirm that these nutrients are rapidly spent in the production processes of ecosystems. The calculated trophic state index (according to R. Carlson) indicates that the number of oligotrophic lakes in the forest tundra zone decreased by 50% by 2010–2018, and these lakes are absent from the northern taiga zone. Temperature increase and climate warming in the Arctic zone first caused the increase in the contents of nutrients in the lakes and their trophic states.","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"7 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/eco.2713","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Eutrophication of water bodies is analysed as a global process. The volumes of globally increasing use of nitrogen and phosphorus are demonstrated, with the dispersion of these elements leading to increased nutrient contents in lakes and rivers. Results of original studies on remote lakes in the Arctic zone indicate that the content of nutrients in these lakes has increased over the past decades. Concentrations of nitrogen, phosphorus and organic matter in lake waters tend to increase in the absence of anthropogenic effects. Simultaneously, the silicon concentrations were found to decrease because of the consumption by diatoms. Low concentrations of bioavailable nutrients confirm that these nutrients are rapidly spent in the production processes of ecosystems. The calculated trophic state index (according to R. Carlson) indicates that the number of oligotrophic lakes in the forest tundra zone decreased by 50% by 2010–2018, and these lakes are absent from the northern taiga zone. Temperature increase and climate warming in the Arctic zone first caused the increase in the contents of nutrients in the lakes and their trophic states.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
湖泊富营养化:从全球进程到科拉北极地区的区域影响
水体富营养化是一个全球性过程。研究表明,氮和磷的使用量在全球范围内不断增加,这些元素的扩散导致湖泊和河流中的营养物质含量增加。对北极地区偏远湖泊的原始研究结果表明,这些湖泊中的营养物质含量在过去几十年中有所增加。在没有人为影响的情况下,湖水中的氮、磷和有机物浓度呈上升趋势。同时,由于硅藻的消耗,硅的浓度有所下降。生物可利用养分的低浓度证实,这些养分在生态系统的生产过程中消耗很快。计算得出的营养状态指数(根据 R. Carlson)表明,到 2010-2018 年,森林苔原区的低营养湖泊数量减少了 50%,而北部泰加带则没有这些湖泊。北极地区的气温升高和气候变暖首先导致了湖泊中营养物质含量及其营养状态的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecohydrology
Ecohydrology 环境科学-生态学
CiteScore
5.10
自引率
7.70%
发文量
116
审稿时长
24 months
期刊介绍: Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management. Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.
期刊最新文献
Issue Information Temperature-driven convergence and divergence of ecohydrological dynamics in the ecosystems of a sky island mountain range Issue Information Soil Building and Capillary Barrier–Enhanced Water Availability Help Explain Pisonia grandis and Other Atoll Native's Tolerance for Variable Precipitation Regimes Analysis of Research Hot Spots in Chinese and International English Ecohydrological Literature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1