{"title":"Guldborgsund Arson House Fire Experiment and Numerical Investigation","authors":"Bjarne Paulsen Husted, Karlis Livkiss, Ana Sauca","doi":"10.1007/s10694-024-01584-y","DOIUrl":null,"url":null,"abstract":"<p>This paper describes the Guldborgsund arson house fire experiment performed in Denmark and the subsequent numerical investigation. Gas temperatures were measured with four thermocouple trees, and smoke detector activation times were recorded in all rooms. A two-step approach was used to perform the numerical modelling for reproduction of the fire scene. The measured temperatures in the room of fire origin were used as an input for back calculating the Heat Release Rate (HRR) with the two-zone model Argos. As a next step, this HRR was used in the Fire Dynamic Simulator (FDS) to predict the temperatures and the smoke detectors’ activation times in other rooms. The FDS model was partly build using output files from the laser scanning. A sensitivity analysis is presented, where the effect of nine input parameters was investigated, including HRR, the material properties, the height of the fuel bed, the fire area, level of geometrical detail of the first item ignited etc. This study showed that the measured soot deposition heights on the walls differed from the heights of measured sharp temperature gradients used to indicate the hot smoke layer. The numerical simulations resulted in less than 50% error for most of the temperature measurement points during the fuel-controlled stage of the fire and results were the most sensitive to the input HRR. Material properties in FDS had a significant influence on the computed upper-layer gas temperatures at late stages of the fire.</p>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"44 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10694-024-01584-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes the Guldborgsund arson house fire experiment performed in Denmark and the subsequent numerical investigation. Gas temperatures were measured with four thermocouple trees, and smoke detector activation times were recorded in all rooms. A two-step approach was used to perform the numerical modelling for reproduction of the fire scene. The measured temperatures in the room of fire origin were used as an input for back calculating the Heat Release Rate (HRR) with the two-zone model Argos. As a next step, this HRR was used in the Fire Dynamic Simulator (FDS) to predict the temperatures and the smoke detectors’ activation times in other rooms. The FDS model was partly build using output files from the laser scanning. A sensitivity analysis is presented, where the effect of nine input parameters was investigated, including HRR, the material properties, the height of the fuel bed, the fire area, level of geometrical detail of the first item ignited etc. This study showed that the measured soot deposition heights on the walls differed from the heights of measured sharp temperature gradients used to indicate the hot smoke layer. The numerical simulations resulted in less than 50% error for most of the temperature measurement points during the fuel-controlled stage of the fire and results were the most sensitive to the input HRR. Material properties in FDS had a significant influence on the computed upper-layer gas temperatures at late stages of the fire.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.