Efficient Privacy-Preserving KAN Inference Using Homomorphic Encryption

Zhizheng Lai, Yufei Zhou, Peijia Zheng, Lin Chen
{"title":"Efficient Privacy-Preserving KAN Inference Using Homomorphic Encryption","authors":"Zhizheng Lai, Yufei Zhou, Peijia Zheng, Lin Chen","doi":"arxiv-2409.07751","DOIUrl":null,"url":null,"abstract":"The recently proposed Kolmogorov-Arnold Networks (KANs) offer enhanced\ninterpretability and greater model expressiveness. However, KANs also present\nchallenges related to privacy leakage during inference. Homomorphic encryption\n(HE) facilitates privacy-preserving inference for deep learning models,\nenabling resource-limited users to benefit from deep learning services while\nensuring data security. Yet, the complex structure of KANs, incorporating\nnonlinear elements like the SiLU activation function and B-spline functions,\nrenders existing privacy-preserving inference techniques inadequate. To address\nthis issue, we propose an accurate and efficient privacy-preserving inference\nscheme tailored for KANs. Our approach introduces a task-specific polynomial\napproximation for the SiLU activation function, dynamically adjusting the\napproximation range to ensure high accuracy on real-world datasets.\nAdditionally, we develop an efficient method for computing B-spline functions\nwithin the HE domain, leveraging techniques such as repeat packing, lazy\ncombination, and comparison functions. We evaluate the effectiveness of our\nprivacy-preserving KAN inference scheme on both symbolic formula evaluation and\nimage classification. The experimental results show that our model achieves\naccuracy comparable to plaintext KANs across various datasets and outperforms\nplaintext MLPs. Additionally, on the CIFAR-10 dataset, our inference latency\nachieves over 7 times speedup compared to the naive method.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The recently proposed Kolmogorov-Arnold Networks (KANs) offer enhanced interpretability and greater model expressiveness. However, KANs also present challenges related to privacy leakage during inference. Homomorphic encryption (HE) facilitates privacy-preserving inference for deep learning models, enabling resource-limited users to benefit from deep learning services while ensuring data security. Yet, the complex structure of KANs, incorporating nonlinear elements like the SiLU activation function and B-spline functions, renders existing privacy-preserving inference techniques inadequate. To address this issue, we propose an accurate and efficient privacy-preserving inference scheme tailored for KANs. Our approach introduces a task-specific polynomial approximation for the SiLU activation function, dynamically adjusting the approximation range to ensure high accuracy on real-world datasets. Additionally, we develop an efficient method for computing B-spline functions within the HE domain, leveraging techniques such as repeat packing, lazy combination, and comparison functions. We evaluate the effectiveness of our privacy-preserving KAN inference scheme on both symbolic formula evaluation and image classification. The experimental results show that our model achieves accuracy comparable to plaintext KANs across various datasets and outperforms plaintext MLPs. Additionally, on the CIFAR-10 dataset, our inference latency achieves over 7 times speedup compared to the naive method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用同态加密进行高效的隐私保护 KAN 推断
最近提出的 Kolmogorov-Arnold 网络(KANs)具有更强的可解释性和更高的模型表达能力。然而,KANs 也面临着推理过程中隐私泄露的挑战。同态加密(HE)有助于深度学习模型的隐私保护推理,使资源有限的用户能够受益于深度学习服务,同时确保数据安全。然而,KANs结构复杂,包含SiLU激活函数和B-样条函数等非线性元素,使得现有的隐私保护推理技术无法满足需要。为了解决这个问题,我们提出了一种专为 KAN 量身定制的准确高效的隐私保护推理方案。我们的方法为 SiLU 激活函数引入了针对特定任务的多项式逼近,动态调整逼近范围,以确保在真实世界数据集上的高精度。我们评估了保护隐私的 KAN 推理方案在符号公式评估和图像分类方面的有效性。实验结果表明,我们的模型在各种数据集上实现了与明文 KAN 相当的准确性,并且优于明文 MLP。此外,在 CIFAR-10 数据集上,我们的推理延迟比原始方法提高了 7 倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Almost Sure Convergence of Linear Temporal Difference Learning with Arbitrary Features The Impact of Element Ordering on LM Agent Performance Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques Extended Deep Submodular Functions Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1