TMEM100 acts as a TAK1 receptor that prevents pathological cardiac hypertrophy progression

IF 8.2 2区 生物学 Q1 CELL BIOLOGY Cell Communication and Signaling Pub Date : 2024-09-11 DOI:10.1186/s12964-024-01816-2
Bin-Bin Zhang, Yi-Lin Zhao, Yan-Yu Lu, Ji-Hong Shen, Hui-Yong Li, Han-Xue Zhang, Xiao-Yue Yu, Wen-Cai Zhang, Gang Li, Zhan-Ying Han, Sen Guo, Xu-Tao Zhang
{"title":"TMEM100 acts as a TAK1 receptor that prevents pathological cardiac hypertrophy progression","authors":"Bin-Bin Zhang, Yi-Lin Zhao, Yan-Yu Lu, Ji-Hong Shen, Hui-Yong Li, Han-Xue Zhang, Xiao-Yue Yu, Wen-Cai Zhang, Gang Li, Zhan-Ying Han, Sen Guo, Xu-Tao Zhang","doi":"10.1186/s12964-024-01816-2","DOIUrl":null,"url":null,"abstract":"Pathological cardiac hypertrophy is the primary cause of heart failure, yet its underlying mechanisms remain incompletely understood. Transmembrane protein 100 (TMEM100) plays a role in various disorders, such as nervous system disease, pain and tumorigenesis, but its function in pathological cardiac hypertrophy is still unknown. In this study, we observed that TMEM100 is upregulated in cardiac hypertrophy. Functional investigations have shown that adeno-associated virus 9 (AAV9) mediated-TMEM100 overexpression mice attenuates transverse aortic constriction (TAC)-induced cardiac hypertrophy, including cardiomyocyte enlargement, cardiac fibrosis, and impaired heart structure and function. We subsequently demonstrated that adenoviral TMEM100 (AdTMEM100) mitigates phenylephrine (PE)-induced cardiomyocyte hypertrophy and downregulates the expression of cardiac hypertrophic markers in vitro, whereas TMEM100 knockdown exacerbates cardiomyocyte hypertrophy. The RNA sequences of the AdTMEM100 group and control group revealed that TMEM100 was involved in oxidative stress and the MAPK signaling pathway after PE stimulation. Mechanistically, we revealed that the transmembrane domain of TMEM100 (amino acids 53–75 and 85–107) directly interacts with the C-terminal region of TAK1 (amino acids 1–300) and inhibits the phosphorylation of TAK1 and its downstream molecules JNK and p38. TAK1-binding-defective TMEM100 failed to inhibit the activation of the TAK1-JNK/p38 pathway. Finally, the application of a TAK1 inhibitor (iTAK1) revealed that TAK1 is necessary for TMEM100-mediated cardiac hypertrophy. In summary, TMEM100 protects against pathological cardiac hypertrophy through the TAK1-JNK/p38 pathway and may serve as a promising target for the treatment of cardiac hypertrophy.","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01816-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pathological cardiac hypertrophy is the primary cause of heart failure, yet its underlying mechanisms remain incompletely understood. Transmembrane protein 100 (TMEM100) plays a role in various disorders, such as nervous system disease, pain and tumorigenesis, but its function in pathological cardiac hypertrophy is still unknown. In this study, we observed that TMEM100 is upregulated in cardiac hypertrophy. Functional investigations have shown that adeno-associated virus 9 (AAV9) mediated-TMEM100 overexpression mice attenuates transverse aortic constriction (TAC)-induced cardiac hypertrophy, including cardiomyocyte enlargement, cardiac fibrosis, and impaired heart structure and function. We subsequently demonstrated that adenoviral TMEM100 (AdTMEM100) mitigates phenylephrine (PE)-induced cardiomyocyte hypertrophy and downregulates the expression of cardiac hypertrophic markers in vitro, whereas TMEM100 knockdown exacerbates cardiomyocyte hypertrophy. The RNA sequences of the AdTMEM100 group and control group revealed that TMEM100 was involved in oxidative stress and the MAPK signaling pathway after PE stimulation. Mechanistically, we revealed that the transmembrane domain of TMEM100 (amino acids 53–75 and 85–107) directly interacts with the C-terminal region of TAK1 (amino acids 1–300) and inhibits the phosphorylation of TAK1 and its downstream molecules JNK and p38. TAK1-binding-defective TMEM100 failed to inhibit the activation of the TAK1-JNK/p38 pathway. Finally, the application of a TAK1 inhibitor (iTAK1) revealed that TAK1 is necessary for TMEM100-mediated cardiac hypertrophy. In summary, TMEM100 protects against pathological cardiac hypertrophy through the TAK1-JNK/p38 pathway and may serve as a promising target for the treatment of cardiac hypertrophy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TMEM100 是一种 TAK1 受体,可阻止病理性心肌肥厚的发展
病理性心肌肥厚是心力衰竭的主要原因,但其潜在机制仍不完全清楚。跨膜蛋白 100(TMEM100)在神经系统疾病、疼痛和肿瘤发生等多种疾病中发挥作用,但其在病理性心肌肥厚中的功能仍不清楚。在这项研究中,我们观察到 TMEM100 在心肌肥厚中上调。功能研究表明,腺相关病毒9(AAV9)介导的TMEM100过表达小鼠可减轻横主动脉收缩(TAC)诱导的心脏肥大,包括心肌细胞增大、心脏纤维化以及心脏结构和功能受损。我们随后证实,腺病毒 TMEM100(AdTMEM100)可减轻苯肾上腺素(PE)诱导的体外心肌细胞肥大并下调心脏肥大标志物的表达,而 TMEM100 基因敲除则会加剧心肌细胞肥大。AdTMEM100组和对照组的RNA序列显示,TMEM100参与了PE刺激后的氧化应激和MAPK信号通路。从机理上讲,我们发现TMEM100的跨膜结构域(氨基酸53-75和85-107)直接与TAK1的C端区域(氨基酸1-300)相互作用,并抑制TAK1及其下游分子JNK和p38的磷酸化。与 TAK1 结合缺陷的 TMEM100 无法抑制 TAK1-JNK/p38 通路的激活。最后,应用 TAK1 抑制剂(iTAK1)发现,TAK1 是 TMEM100 介导的心脏肥大所必需的。总之,TMEM100 可通过 TAK1-JNK/p38 通路防止病理性心肌肥厚,可作为治疗心肌肥厚的一个有前途的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
期刊最新文献
Breast cancer cells utilize T3 to trigger proliferation through cellular Ca2+ modulation. Atomoxetine suppresses radioresistance in glioblastoma via circATIC/miR-520d-5p/Notch2-Hey1 axis. Regulation of ADAM10 activity through microdomain-dependent intracellular calcium changes. Blue light-driven cell cycle arrest in thyroid cancer via Retinal-OPN3 complex. PIM1 kinase and its diverse substrate in solid tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1