Wenjiang Ouyang;Qian Liu;Junsheng Mu;Anwer AI-Dulaimi;Xiaojun Jing;Qilie Liu
{"title":"Communication-Efficient Federated Learning for Large-Scale Multiagent Systems in ISAC: Data Augmentation With Reinforcement Learning","authors":"Wenjiang Ouyang;Qian Liu;Junsheng Mu;Anwer AI-Dulaimi;Xiaojun Jing;Qilie Liu","doi":"10.1109/JSYST.2024.3450883","DOIUrl":null,"url":null,"abstract":"Integrated sensing and communication (ISAC) has attracted great attention with the gains of spectrum efficiency and deployment costs through the coexistence of sensing and communication functions. Meanwhile, federated learning (FL) has great potential to apply to large-scale multiagent systems (LSMAS) in ISAC due to the attractive privacy protection mechanism. Nonindependent identically distribution (non-IID) is a fundamental challenge in FL and seriously affects the convergence performance. To deal with the non-IID issue in FL, a data augmentation optimization algorithm (DAOA) is proposed based on reinforcement learning (RL), where an augmented dataset is generated based on a generative adversarial network (GAN) and the local model parameters are inputted into a deep Q-network (DQN) to learn the optimal number of augmented data. Different from the existing works that only optimize the training performance, the number of augmented data is also considered to improve the sample efficiency in the article. In addition, to alleviate the high-dimensional input challenge in DQN and reduce the communication overhead in FL, a lightweight model is applied to the client based on deep separable convolution (DSC). Simulation results indicate that our proposed DAOA algorithm acquires considerable performance with significantly fewer augmented data, and the communication overhead is reduced greatly compared with benchmark algorithms.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 4","pages":"1893-1904"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10669033/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated sensing and communication (ISAC) has attracted great attention with the gains of spectrum efficiency and deployment costs through the coexistence of sensing and communication functions. Meanwhile, federated learning (FL) has great potential to apply to large-scale multiagent systems (LSMAS) in ISAC due to the attractive privacy protection mechanism. Nonindependent identically distribution (non-IID) is a fundamental challenge in FL and seriously affects the convergence performance. To deal with the non-IID issue in FL, a data augmentation optimization algorithm (DAOA) is proposed based on reinforcement learning (RL), where an augmented dataset is generated based on a generative adversarial network (GAN) and the local model parameters are inputted into a deep Q-network (DQN) to learn the optimal number of augmented data. Different from the existing works that only optimize the training performance, the number of augmented data is also considered to improve the sample efficiency in the article. In addition, to alleviate the high-dimensional input challenge in DQN and reduce the communication overhead in FL, a lightweight model is applied to the client based on deep separable convolution (DSC). Simulation results indicate that our proposed DAOA algorithm acquires considerable performance with significantly fewer augmented data, and the communication overhead is reduced greatly compared with benchmark algorithms.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.