Elhadj Bounadja, Abdelkadir Belhadj Djilali, Adil Yahdou
{"title":"Modified third‐order sliding mode control with adaptive gains for a multiphase PMSG wind turbine under double‐phase open fault","authors":"Elhadj Bounadja, Abdelkadir Belhadj Djilali, Adil Yahdou","doi":"10.1002/cta.4253","DOIUrl":null,"url":null,"abstract":"Wind energy production systems (WEPS) are increasingly vital in the transition to renewable energy sources, with permanent magnetic synchronous generators (PMSG) being widely adopted due to their high efficiency and reliability. Developing robust control methods is essential to ensure that WEPS operate efficiently even under adverse conditions. This study focuses on optimizing control strategies for WEPS utilizing a 5‐phase PMSG and addresses challenges posed by double‐phase open fault (DPOF) scenarios. Unlike conventional second‐order sliding mode control (SOSMC) based on the super‐twisting algorithm (STA), the proposed method enhances performance by elevating the sliding surface time derivative degree to a third order and modifying the discontinuous term of STA with an arctangent function, promising to reduce chattering effects. Additionally, an adaptation law adjusts the improved STA gains, forming adaptive‐gain third‐order sliding mode control (AG‐TOSMC), which outperforms SOSMC under various disturbances such as wind speed fluctuations, parameter changes, and DPOF scenarios. The AG‐TOSMC enhances the quality of active and reactive power by reducing fluctuation ratios compared with the SOSMC. The efficiency of WEPS increases to 98.5% with AG‐TOSMC, surpassing the 93.5% achieved with SOSMC. Additionally, a DPOF test confirms the aptitude of the 5‐phase PMSG to work under degraded circumstances, supplying appropriate electrical power to the network without significant adverse effects. Numerical simulations validate the efficiency of the suggested WEPS and its control, demonstrating superior performance achieved with AG‐TOSMC.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":"8 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4253","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Wind energy production systems (WEPS) are increasingly vital in the transition to renewable energy sources, with permanent magnetic synchronous generators (PMSG) being widely adopted due to their high efficiency and reliability. Developing robust control methods is essential to ensure that WEPS operate efficiently even under adverse conditions. This study focuses on optimizing control strategies for WEPS utilizing a 5‐phase PMSG and addresses challenges posed by double‐phase open fault (DPOF) scenarios. Unlike conventional second‐order sliding mode control (SOSMC) based on the super‐twisting algorithm (STA), the proposed method enhances performance by elevating the sliding surface time derivative degree to a third order and modifying the discontinuous term of STA with an arctangent function, promising to reduce chattering effects. Additionally, an adaptation law adjusts the improved STA gains, forming adaptive‐gain third‐order sliding mode control (AG‐TOSMC), which outperforms SOSMC under various disturbances such as wind speed fluctuations, parameter changes, and DPOF scenarios. The AG‐TOSMC enhances the quality of active and reactive power by reducing fluctuation ratios compared with the SOSMC. The efficiency of WEPS increases to 98.5% with AG‐TOSMC, surpassing the 93.5% achieved with SOSMC. Additionally, a DPOF test confirms the aptitude of the 5‐phase PMSG to work under degraded circumstances, supplying appropriate electrical power to the network without significant adverse effects. Numerical simulations validate the efficiency of the suggested WEPS and its control, demonstrating superior performance achieved with AG‐TOSMC.
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.