Using Multi-Objective Optimization to build non-Random Forest

Pub Date : 2024-09-11 DOI:10.1093/jigpal/jzae110
Joanna Klikowska, Michał Woźniak
{"title":"Using Multi-Objective Optimization to build non-Random Forest","authors":"Joanna Klikowska, Michał Woźniak","doi":"10.1093/jigpal/jzae110","DOIUrl":null,"url":null,"abstract":"The use of multi-objective optimization to build classifier ensembles is becoming increasingly popular. This approach optimizes more than one criterion simultaneously and returns a set of solutions. Thus the final solution can be more tailored to the user’s needs. The work proposes the MOONF method using one or two criteria depending on the method’s version. Optimization returns solutions as feature subspaces that are then used to train decision tree models. In this way, the ensemble is created non-randomly, unlike the popular Random Subspace approach (such as the Random Forest classifier). Experiments carried out on many imbalanced datasets compare the proposed methods with state-of-the-art methods and show the advantage of the MOONF method in the multi-objective version.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of multi-objective optimization to build classifier ensembles is becoming increasingly popular. This approach optimizes more than one criterion simultaneously and returns a set of solutions. Thus the final solution can be more tailored to the user’s needs. The work proposes the MOONF method using one or two criteria depending on the method’s version. Optimization returns solutions as feature subspaces that are then used to train decision tree models. In this way, the ensemble is created non-randomly, unlike the popular Random Subspace approach (such as the Random Forest classifier). Experiments carried out on many imbalanced datasets compare the proposed methods with state-of-the-art methods and show the advantage of the MOONF method in the multi-objective version.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
利用多目标优化构建非随机森林
使用多目标优化来构建分类器集合正变得越来越流行。这种方法可同时优化多个标准,并返回一组解决方案。因此,最终的解决方案可以更加符合用户的需求。这项工作提出了 MOONF 方法,根据该方法的版本,使用一个或两个标准。优化会将解决方案返回为特征子空间,然后用于训练决策树模型。与流行的随机子空间方法(如随机森林分类器)不同,该方法是以非随机方式创建集合的。在许多不平衡数据集上进行的实验将所提出的方法与最先进的方法进行了比较,并显示出 MOONF 方法在多目标版本中的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1