{"title":"Integration of zinc anode and cement: unlocking scalable energy storage","authors":"Zhaolong Liu, Pan Feng, Ruidan Liu, Long Yuan, Xiangyu Meng, Guanghui Tao, Jian Chen, Qianping Ran, Jinxiang Hong, Jiaping Liu, Changwen Miao","doi":"10.1093/nsr/nwae309","DOIUrl":null,"url":null,"abstract":"The significant volume of existing buildings and ongoing annual construction of infrastructure underscore the vast potential for integrating large-scale energy storage solutions into these structures. Herein, we propose an innovative approach for developing structural and scalable energy storage systems by integrating safe and cost-effective zinc-ion hybrid supercapacitors into cement mortar, which is the predominant material used for structural purposes. By performing air entrainment and leveraging the adverse reaction of the ZnSO4 electrolyte, we can engineer an aerated cement mortar with a multiscale pore structure that exhibits dual functionality: effective ion conductivity in the form of a cell separator and a robust load-bearing capacity that contributes to structural integrity. Consequently, a hybrid supercapacitor building block consisting of a tailored cement mortar, zinc metal anode, and active carbon cathode demonstrates exceptional specific energy density (71.4 Wh kg−1 at 68.7 W kg−1), high areal energy density (2.0 Wh m−2 at 1.9 W m−2), favorable cycling stability (∼92% capacity retention after 1000 cycles), and exceptional safety (endurance in a 1-hour combustion test). By demonstrating the scalability of the structural energy storage system coupled with solar energy generation, this new device exhibits great potential to revolutionize energy storage systems.","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"448 1","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae309","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The significant volume of existing buildings and ongoing annual construction of infrastructure underscore the vast potential for integrating large-scale energy storage solutions into these structures. Herein, we propose an innovative approach for developing structural and scalable energy storage systems by integrating safe and cost-effective zinc-ion hybrid supercapacitors into cement mortar, which is the predominant material used for structural purposes. By performing air entrainment and leveraging the adverse reaction of the ZnSO4 electrolyte, we can engineer an aerated cement mortar with a multiscale pore structure that exhibits dual functionality: effective ion conductivity in the form of a cell separator and a robust load-bearing capacity that contributes to structural integrity. Consequently, a hybrid supercapacitor building block consisting of a tailored cement mortar, zinc metal anode, and active carbon cathode demonstrates exceptional specific energy density (71.4 Wh kg−1 at 68.7 W kg−1), high areal energy density (2.0 Wh m−2 at 1.9 W m−2), favorable cycling stability (∼92% capacity retention after 1000 cycles), and exceptional safety (endurance in a 1-hour combustion test). By demonstrating the scalability of the structural energy storage system coupled with solar energy generation, this new device exhibits great potential to revolutionize energy storage systems.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.