Integration of zinc anode and cement: unlocking scalable energy storage

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES National Science Review Pub Date : 2024-09-05 DOI:10.1093/nsr/nwae309
Zhaolong Liu, Pan Feng, Ruidan Liu, Long Yuan, Xiangyu Meng, Guanghui Tao, Jian Chen, Qianping Ran, Jinxiang Hong, Jiaping Liu, Changwen Miao
{"title":"Integration of zinc anode and cement: unlocking scalable energy storage","authors":"Zhaolong Liu, Pan Feng, Ruidan Liu, Long Yuan, Xiangyu Meng, Guanghui Tao, Jian Chen, Qianping Ran, Jinxiang Hong, Jiaping Liu, Changwen Miao","doi":"10.1093/nsr/nwae309","DOIUrl":null,"url":null,"abstract":"The significant volume of existing buildings and ongoing annual construction of infrastructure underscore the vast potential for integrating large-scale energy storage solutions into these structures. Herein, we propose an innovative approach for developing structural and scalable energy storage systems by integrating safe and cost-effective zinc-ion hybrid supercapacitors into cement mortar, which is the predominant material used for structural purposes. By performing air entrainment and leveraging the adverse reaction of the ZnSO4 electrolyte, we can engineer an aerated cement mortar with a multiscale pore structure that exhibits dual functionality: effective ion conductivity in the form of a cell separator and a robust load-bearing capacity that contributes to structural integrity. Consequently, a hybrid supercapacitor building block consisting of a tailored cement mortar, zinc metal anode, and active carbon cathode demonstrates exceptional specific energy density (71.4 Wh kg−1 at 68.7 W kg−1), high areal energy density (2.0 Wh m−2 at 1.9 W m−2), favorable cycling stability (∼92% capacity retention after 1000 cycles), and exceptional safety (endurance in a 1-hour combustion test). By demonstrating the scalability of the structural energy storage system coupled with solar energy generation, this new device exhibits great potential to revolutionize energy storage systems.","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"448 1","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae309","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The significant volume of existing buildings and ongoing annual construction of infrastructure underscore the vast potential for integrating large-scale energy storage solutions into these structures. Herein, we propose an innovative approach for developing structural and scalable energy storage systems by integrating safe and cost-effective zinc-ion hybrid supercapacitors into cement mortar, which is the predominant material used for structural purposes. By performing air entrainment and leveraging the adverse reaction of the ZnSO4 electrolyte, we can engineer an aerated cement mortar with a multiscale pore structure that exhibits dual functionality: effective ion conductivity in the form of a cell separator and a robust load-bearing capacity that contributes to structural integrity. Consequently, a hybrid supercapacitor building block consisting of a tailored cement mortar, zinc metal anode, and active carbon cathode demonstrates exceptional specific energy density (71.4 Wh kg−1 at 68.7 W kg−1), high areal energy density (2.0 Wh m−2 at 1.9 W m−2), favorable cycling stability (∼92% capacity retention after 1000 cycles), and exceptional safety (endurance in a 1-hour combustion test). By demonstrating the scalability of the structural energy storage system coupled with solar energy generation, this new device exhibits great potential to revolutionize energy storage systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锌阳极与水泥的结合:开启可扩展的能源储存技术
大量的现有建筑和每年不断进行的基础设施建设,凸显了将大规模储能解决方案集成到这些结构中的巨大潜力。在此,我们提出了一种创新方法,通过将安全且经济高效的锌离子混合超级电容器集成到水泥砂浆(用于结构目的的主要材料)中,开发结构性可扩展储能系统。通过夹带空气和利用 ZnSO4 电解质的逆反应,我们可以设计出一种具有多尺度孔隙结构的充气水泥砂浆,这种结构具有双重功能:以电池分离器的形式实现有效的离子传导性,以及有助于结构完整性的强大承载能力。因此,由定制水泥砂浆、锌金属阳极和活性碳阴极组成的混合超级电容器构件显示出卓越的比能量密度(71.4 Wh kg-1,68.7 W kg-1)、高面能量密度(2.0 Wh m-2,1.9 W m-2)、良好的循环稳定性(1000 次循环后容量保持率为 92%)和卓越的安全性(1 小时燃烧测试中的耐久性)。通过展示结构储能系统与太阳能发电相结合的可扩展性,这种新装置展现出了彻底改变储能系统的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
期刊最新文献
US-China cooperation and competition in science and technology. Cretaceous chewing-louse eggs on enantiornithine birds. Element cycling by environmental viruses. Reversible biomass aerogels with flame retardancy and smart elasticity. Core factor of NEXT complex, ZCCHC8, governs the silencing of LINE1 during spermatogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1