Bat-Or Shalom, Miguel A. Andrés, Ashley R. Head, Boruch Z. Epstein, Olga Brontvein, Virginia Pérez-Dieste, Ignacio J. Villar-Garcia, Alex S. Walton, Kacper Polus, Robert S. Weatherup, Baran Eren
{"title":"Chemical state of nickel nanoparticles during the oxygen evolution reaction in a carbonate-bicarbonate buffer solution","authors":"Bat-Or Shalom, Miguel A. Andrés, Ashley R. Head, Boruch Z. Epstein, Olga Brontvein, Virginia Pérez-Dieste, Ignacio J. Villar-Garcia, Alex S. Walton, Kacper Polus, Robert S. Weatherup, Baran Eren","doi":"10.1016/j.xcrp.2024.102165","DOIUrl":null,"url":null,"abstract":"<p>The chemical state of nickel anodes during the oxygen evolution reaction can impact their electrocatalytic performance. Here, X-ray photoelectron and absorption spectroscopies reveal the chemical state of nickel nanoparticles under oxygen evolution reaction conditions in a mildly alkaline carbonate-bicarbonate buffer solution. Ni<sup>2+</sup> and Ni<sup>3+</sup> species are observed at the reaction onset potential with a 7:4 ratio, with no remaining metallic nickel. These species include NiO, which increasingly converts to other Ni<sup>2+</sup> and Ni<sup>3+</sup> species once the potential is increased above the onset potential. Conversely, when a 20-nm-thick nickel film is used instead of nickel nanoparticles, a significant amount of metallic nickel remains in the inner layers. Nickel nanoparticles also undergo significant morphological and structural changes during the reaction, as evidenced by <em>ex situ</em> transmission electron microscopy. Amorphization of the nanoparticles is attributed to significant H<sub>2</sub>O incorporation, with the oxygen intensity increasing both in <em>operando</em> and <em>ex situ</em> measurements.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"30 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102165","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The chemical state of nickel anodes during the oxygen evolution reaction can impact their electrocatalytic performance. Here, X-ray photoelectron and absorption spectroscopies reveal the chemical state of nickel nanoparticles under oxygen evolution reaction conditions in a mildly alkaline carbonate-bicarbonate buffer solution. Ni2+ and Ni3+ species are observed at the reaction onset potential with a 7:4 ratio, with no remaining metallic nickel. These species include NiO, which increasingly converts to other Ni2+ and Ni3+ species once the potential is increased above the onset potential. Conversely, when a 20-nm-thick nickel film is used instead of nickel nanoparticles, a significant amount of metallic nickel remains in the inner layers. Nickel nanoparticles also undergo significant morphological and structural changes during the reaction, as evidenced by ex situ transmission electron microscopy. Amorphization of the nanoparticles is attributed to significant H2O incorporation, with the oxygen intensity increasing both in operando and ex situ measurements.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.