Fostering creativity in engineering design through constructive dialogues with generative artificial intelligence

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2024-08-16 DOI:10.1016/j.xcrp.2024.102157
William Solórzano Requejo, Francisco Franco Martínez, Carlos Aguilar Vega, Rodrigo Zapata Martínez, Adrián Martínez Cendrero, Andrés Díaz Lantada
{"title":"Fostering creativity in engineering design through constructive dialogues with generative artificial intelligence","authors":"William Solórzano Requejo, Francisco Franco Martínez, Carlos Aguilar Vega, Rodrigo Zapata Martínez, Adrián Martínez Cendrero, Andrés Díaz Lantada","doi":"10.1016/j.xcrp.2024.102157","DOIUrl":null,"url":null,"abstract":"<p>Artificial intelligence (AI) is progressively reshaping the way that researchers design and study highly complex systems. In this perspective, we introduce an engineering design methodology aimed at fostering creativity through “constructive dialogues with a generative AI” and exemplify its potential through a set of methodically developed case studies. This creativity promotion approach starts with computer-aided design (CAD) models of lattices, metamaterials, and architected materials, which are provided as initial inputs to a generative AI through a chat. Then, the conversation starts with researchers asking the generative AI to modify the provided CAD model images by incorporating new elements, placing them in quasi-real-life environments, or adapting the provided designs to the structures of new products. To illustrate the methodology, a varied set of selected case studies of constructive dialogues leading to highly innovative designs are provided, bridging the gap between tissue engineering scaffolds and building architectures, biohybrid materials and product design, and innovative structures and medical devices, to cite a few.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"74 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102157","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) is progressively reshaping the way that researchers design and study highly complex systems. In this perspective, we introduce an engineering design methodology aimed at fostering creativity through “constructive dialogues with a generative AI” and exemplify its potential through a set of methodically developed case studies. This creativity promotion approach starts with computer-aided design (CAD) models of lattices, metamaterials, and architected materials, which are provided as initial inputs to a generative AI through a chat. Then, the conversation starts with researchers asking the generative AI to modify the provided CAD model images by incorporating new elements, placing them in quasi-real-life environments, or adapting the provided designs to the structures of new products. To illustrate the methodology, a varied set of selected case studies of constructive dialogues leading to highly innovative designs are provided, bridging the gap between tissue engineering scaffolds and building architectures, biohybrid materials and product design, and innovative structures and medical devices, to cite a few.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过与生成式人工智能的建设性对话培养工程设计的创造力
人工智能(AI)正在逐步重塑研究人员设计和研究高度复杂系统的方式。从这一角度出发,我们介绍了一种工程设计方法,旨在通过 "与生成式人工智能进行建设性对话 "来培养创造力,并通过一系列有条不紊的案例研究来展示其潜力。这种促进创造力的方法从网格、超材料和建筑材料的计算机辅助设计(CAD)模型开始,通过聊天将这些模型作为初始输入提供给生成式人工智能。然后,对话开始,研究人员要求生成式人工智能修改所提供的 CAD 模型图像,加入新元素,将其置于准现实环境中,或将所提供的设计调整为新产品的结构。为了说明这种方法,我们提供了一系列精选的案例研究,这些案例研究通过建设性对话实现了高度创新的设计,在组织工程支架和建筑结构、生物混合材料和产品设计以及创新结构和医疗设备之间架起了桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Lignin as a bioderived modular surfactant and intercalant for Ti3C2Tx MXene stabilization and tunable functions. Amino acid-dependent phase equilibrium and material properties of tetrapeptide condensates. Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1