{"title":"Exact discrete-time stability analysis of multi-DOF haptic rendering: Impact of multi-rate, time-delay, and mechanical parameters","authors":"Suhail Ganiny, Majid H Koul, Babar Ahmad","doi":"10.1177/09544062241271627","DOIUrl":null,"url":null,"abstract":"Previous studies on the stability analysis of haptic devices have predominantly focused on single-DOF devices, thereby limiting attention to multi-DOF devices, particularly those employing multi-rate sampling schemes. In this paper, we introduce a formulation for the coupled dynamics between the haptic device and the virtual environment for a multi-DOF haptic device controlled using a dual-rate sampling scheme. Subsequently, we analyze its stability through the application of a dynamic decoupling strategy within an exact discrete-time state-space framework while the device is engaged in rendering a virtual wall along one of its operational space coordinates. Furthermore, we explore how the combined influence of the dual-rate sampling approach, time delay, and the mechanical design affects the stability boundaries of the multi-DOF haptic device at a fixed workspace location as well as within the entire usable workspace. Additionally, we utilize a model-order reduction (MOR) framework to simplify the determination of the device’s stability limits, irrespective of the specific combinations of time delay and sampling rates employed.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241271627","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies on the stability analysis of haptic devices have predominantly focused on single-DOF devices, thereby limiting attention to multi-DOF devices, particularly those employing multi-rate sampling schemes. In this paper, we introduce a formulation for the coupled dynamics between the haptic device and the virtual environment for a multi-DOF haptic device controlled using a dual-rate sampling scheme. Subsequently, we analyze its stability through the application of a dynamic decoupling strategy within an exact discrete-time state-space framework while the device is engaged in rendering a virtual wall along one of its operational space coordinates. Furthermore, we explore how the combined influence of the dual-rate sampling approach, time delay, and the mechanical design affects the stability boundaries of the multi-DOF haptic device at a fixed workspace location as well as within the entire usable workspace. Additionally, we utilize a model-order reduction (MOR) framework to simplify the determination of the device’s stability limits, irrespective of the specific combinations of time delay and sampling rates employed.
期刊介绍:
The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.