{"title":"Ultrahigh stability of oxygen sublattice in β−Ga2O3","authors":"Ru He, Junlei Zhao, Jesper Byggmästar, Huan He, Flyura Djurabekova","doi":"10.1103/physrevmaterials.8.084601","DOIUrl":null,"url":null,"abstract":"Recently reported remarkably high radiation tolerance of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>γ</mi><mo>/</mo><mi>β</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> double-polymorphic structure brings this ultrawide-band-gap semiconductor to the frontiers of power electronics applications that are able to operate in challenging environments. Understanding the mechanism of radiation tolerance is crucial for further material modification and tailoring of the desired properties. In this study, we employ machine-learning-enhanced atomistic simulations to assess the stability of both the gallium (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ga</mi></math>) and oxygen (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">O</mi></math>) sublattices under various levels of damage. Our study uncovers the remarkable resilience and stability of the -sublattice, attributing this property to the strong tendency of recovery of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">O</mi></math> defects, especially within the more strongly disordered regions. Interestingly, we observe the opposite behavior of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ga</mi></math> defects that display enhanced stability in the same regions of increased disorder. Moreover, we observe that highly defective <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>β</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> is able to transform into <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>γ</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> upon annealing due to preserved lattice organization of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">O</mi></math> sublattice. This result clearly manifests that the ultrahigh stability of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">O</mi></math> sublattice provides the backbone for the exceptional radiation tolerance of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>γ</mi><mo>/</mo><mi>β</mi></mrow></math> double-polymorphic structure. These computational insights closely align with experimental observations, opening avenues for further exploration of polymorphism in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> and potentially in analogous polymorphic families spanning a broad range of diverse materials of complex polymorphic nature.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"7 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.084601","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently reported remarkably high radiation tolerance of double-polymorphic structure brings this ultrawide-band-gap semiconductor to the frontiers of power electronics applications that are able to operate in challenging environments. Understanding the mechanism of radiation tolerance is crucial for further material modification and tailoring of the desired properties. In this study, we employ machine-learning-enhanced atomistic simulations to assess the stability of both the gallium () and oxygen () sublattices under various levels of damage. Our study uncovers the remarkable resilience and stability of the -sublattice, attributing this property to the strong tendency of recovery of the defects, especially within the more strongly disordered regions. Interestingly, we observe the opposite behavior of the defects that display enhanced stability in the same regions of increased disorder. Moreover, we observe that highly defective is able to transform into upon annealing due to preserved lattice organization of the sublattice. This result clearly manifests that the ultrahigh stability of the sublattice provides the backbone for the exceptional radiation tolerance of the double-polymorphic structure. These computational insights closely align with experimental observations, opening avenues for further exploration of polymorphism in and potentially in analogous polymorphic families spanning a broad range of diverse materials of complex polymorphic nature.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.