Compatibility study of recycled Polypropylene (PP)/Poly(ethylene terephthalate) (PET) blends nanocomposites with PP‐g‐MAH: Modeling of twin screw extrusion
{"title":"Compatibility study of recycled Polypropylene (PP)/Poly(ethylene terephthalate) (PET) blends nanocomposites with PP‐g‐MAH: Modeling of twin screw extrusion","authors":"Dajeong Gwon, Dohyeong Kim, Jaseung Koo","doi":"10.1002/pat.6557","DOIUrl":null,"url":null,"abstract":"Although the utilization of recycled polymers is essential to sustain the environment, conventional recycled polymers face limitations in application due to the degradation of their properties caused by impurities. To solve the problem the performance deterioration of these recycled polymers, this study aimed to enhance their compatibility by chemically adding polypropylene‐graft‐maleic anhydride (PP‐<jats:italic>g</jats:italic>‐MAH) and physically manipulate a screw profile by using an extrusion simulation program. As a result of applying the optimized extrusion process set by the simulation program, significant improvements in the compatibility and dispersion of fillers within the polymer were observed through scanning electron microscopy image analysis. In addition, through detailed analysis of rheological data, the positive impact of adding compatibilizer and changing screw profile on rheological properties was demonstrated. As the compatibility of recycled polymer blends improved, tensile strength increased by approximately two‐fold and thermal conductivity was significantly improved, which were decisive factors in dramatically enhancing the performance of recycled polymers. These improved polymer properties provide an opportunity for recycled polymers to be applied more broadly and will expand the potential for new applications in various industrial fields.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6557","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Although the utilization of recycled polymers is essential to sustain the environment, conventional recycled polymers face limitations in application due to the degradation of their properties caused by impurities. To solve the problem the performance deterioration of these recycled polymers, this study aimed to enhance their compatibility by chemically adding polypropylene‐graft‐maleic anhydride (PP‐g‐MAH) and physically manipulate a screw profile by using an extrusion simulation program. As a result of applying the optimized extrusion process set by the simulation program, significant improvements in the compatibility and dispersion of fillers within the polymer were observed through scanning electron microscopy image analysis. In addition, through detailed analysis of rheological data, the positive impact of adding compatibilizer and changing screw profile on rheological properties was demonstrated. As the compatibility of recycled polymer blends improved, tensile strength increased by approximately two‐fold and thermal conductivity was significantly improved, which were decisive factors in dramatically enhancing the performance of recycled polymers. These improved polymer properties provide an opportunity for recycled polymers to be applied more broadly and will expand the potential for new applications in various industrial fields.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.