Hybrid Spiking Neural Networks for Low-Power Intra-Cortical Brain-Machine Interfaces

Alexandru Vasilache, Jann Krausse, Klaus Knobloch, Juergen Becker
{"title":"Hybrid Spiking Neural Networks for Low-Power Intra-Cortical Brain-Machine Interfaces","authors":"Alexandru Vasilache, Jann Krausse, Klaus Knobloch, Juergen Becker","doi":"arxiv-2409.04428","DOIUrl":null,"url":null,"abstract":"Intra-cortical brain-machine interfaces (iBMIs) have the potential to\ndramatically improve the lives of people with paraplegia by restoring their\nability to perform daily activities. However, current iBMIs suffer from\nscalability and mobility limitations due to bulky hardware and wiring. Wireless\niBMIs offer a solution but are constrained by a limited data rate. To overcome\nthis challenge, we are investigating hybrid spiking neural networks for\nembedded neural decoding in wireless iBMIs. The networks consist of a temporal\nconvolution-based compression followed by recurrent processing and a final\ninterpolation back to the original sequence length. As recurrent units, we\nexplore gated recurrent units (GRUs), leaky integrate-and-fire (LIF) neurons,\nand a combination of both - spiking GRUs (sGRUs) and analyze their differences\nin terms of accuracy, footprint, and activation sparsity. To that end, we train\ndecoders on the \"Nonhuman Primate Reaching with Multichannel Sensorimotor\nCortex Electrophysiology\" dataset and evaluate it using the NeuroBench\nframework, targeting both tracks of the IEEE BioCAS Grand Challenge on Neural\nDecoding. Our approach achieves high accuracy in predicting velocities of\nprimate reaching movements from multichannel primary motor cortex recordings\nwhile maintaining a low number of synaptic operations, surpassing the current\nbaseline models in the NeuroBench framework. This work highlights the potential\nof hybrid neural networks to facilitate wireless iBMIs with high decoding\nprecision and a substantial increase in the number of monitored neurons, paving\nthe way toward more advanced neuroprosthetic technologies.","PeriodicalId":501517,"journal":{"name":"arXiv - QuanBio - Neurons and Cognition","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intra-cortical brain-machine interfaces (iBMIs) have the potential to dramatically improve the lives of people with paraplegia by restoring their ability to perform daily activities. However, current iBMIs suffer from scalability and mobility limitations due to bulky hardware and wiring. Wireless iBMIs offer a solution but are constrained by a limited data rate. To overcome this challenge, we are investigating hybrid spiking neural networks for embedded neural decoding in wireless iBMIs. The networks consist of a temporal convolution-based compression followed by recurrent processing and a final interpolation back to the original sequence length. As recurrent units, we explore gated recurrent units (GRUs), leaky integrate-and-fire (LIF) neurons, and a combination of both - spiking GRUs (sGRUs) and analyze their differences in terms of accuracy, footprint, and activation sparsity. To that end, we train decoders on the "Nonhuman Primate Reaching with Multichannel Sensorimotor Cortex Electrophysiology" dataset and evaluate it using the NeuroBench framework, targeting both tracks of the IEEE BioCAS Grand Challenge on Neural Decoding. Our approach achieves high accuracy in predicting velocities of primate reaching movements from multichannel primary motor cortex recordings while maintaining a low number of synaptic operations, surpassing the current baseline models in the NeuroBench framework. This work highlights the potential of hybrid neural networks to facilitate wireless iBMIs with high decoding precision and a substantial increase in the number of monitored neurons, paving the way toward more advanced neuroprosthetic technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低功耗皮层内脑机接口的混合尖峰神经网络
皮层内脑机接口(iBMIs)具有极大改善截瘫患者生活的潜力,可以恢复他们进行日常活动的能力。然而,目前的 iBMI 由于硬件和布线庞大,在可扩展性和移动性方面受到限制。无线 iBMI 提供了一种解决方案,但受限于有限的数据传输速率。为了克服这一挑战,我们正在研究在无线 iBMI 中嵌入神经解码的混合尖峰神经网络。这种网络包括基于时间卷积的压缩,然后是递归处理,最后插值回原始序列长度。作为递归单元,我们探索了门控递归单元(GRUs)、泄漏整合-发射(LIF)神经元以及两者的组合--尖峰递归单元(sGRUs),并分析了它们在准确性、足迹和激活稀疏性方面的差异。为此,我们在 "非人灵长类多通道感觉运动皮层电生理学伸手 "数据集上追踪解码器,并使用 NeuroBench 框架对其进行评估,目标是 IEEE BioCAS 神经解码大挑战赛的两个赛道。我们的方法能从多通道初级运动皮层记录中预测灵长类动物伸手动作的速度,同时保持较低的突触操作次数,达到了很高的准确度,超过了 NeuroBench 框架中的现有基准模型。这项工作凸显了混合神经网络的潜力,可促进具有高解码精度的无线 iBMI,并大幅增加受监控神经元的数量,为实现更先进的神经假体技术铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Early reduced dopaminergic tone mediated by D3 receptor and dopamine transporter in absence epileptogenesis Contrasformer: A Brain Network Contrastive Transformer for Neurodegenerative Condition Identification Identifying Influential nodes in Brain Networks via Self-Supervised Graph-Transformer Contrastive Learning in Memristor-based Neuromorphic Systems Self-Attention Limits Working Memory Capacity of Transformer-Based Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1