Sulfur-containing polymers for enhancing rate and cycle performance of lithium-sulfur batteries

IF 5.9 3区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Industrial and Engineering Chemistry Pub Date : 2024-08-14 DOI:10.1016/j.jiec.2024.08.018
Sen Yang, Qiang Sun
{"title":"Sulfur-containing polymers for enhancing rate and cycle performance of lithium-sulfur batteries","authors":"Sen Yang, Qiang Sun","doi":"10.1016/j.jiec.2024.08.018","DOIUrl":null,"url":null,"abstract":"Sulfur-containing polymer with covalent C-S bonds has become an ideal alternative cathode of element sulfur for lithium-sulfur battery. However, the rational design of polymer structure with high sulfur content and enhanced electrochemical performance of Li-S battery is still a great challenge. In this study, a facial synthesis of sulfur-containing polymer by using 1,2,3-trichloropropane and sulfur as starting materials at a mild condition was reported, and the covalent anchoring of the C-S bonds within the polymer effectively inhibited the shuttle effect of polysulfides, providing a splendid internal environment for the diffusion of lithium ions. As a result, the rich sulfur content (higher than 80 %) and its homogeneous distribution in the polymer backbone determined the excellent rate performance of obtained sulfur-containing polymers. In terms of cycling performance, the reversible specific capacity of the battery is 396 mAh/g after 500 cycles at a current density of 0.5 A/g and 350 mAh/g after 800 cycles at 1 A/g, with a capacity decay of only 0.06 % per cycle.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"61 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.08.018","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfur-containing polymer with covalent C-S bonds has become an ideal alternative cathode of element sulfur for lithium-sulfur battery. However, the rational design of polymer structure with high sulfur content and enhanced electrochemical performance of Li-S battery is still a great challenge. In this study, a facial synthesis of sulfur-containing polymer by using 1,2,3-trichloropropane and sulfur as starting materials at a mild condition was reported, and the covalent anchoring of the C-S bonds within the polymer effectively inhibited the shuttle effect of polysulfides, providing a splendid internal environment for the diffusion of lithium ions. As a result, the rich sulfur content (higher than 80 %) and its homogeneous distribution in the polymer backbone determined the excellent rate performance of obtained sulfur-containing polymers. In terms of cycling performance, the reversible specific capacity of the battery is 396 mAh/g after 500 cycles at a current density of 0.5 A/g and 350 mAh/g after 800 cycles at 1 A/g, with a capacity decay of only 0.06 % per cycle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于提高锂硫电池速率和循环性能的含硫聚合物
具有共价 C-S 键的含硫聚合物已成为锂硫电池理想的硫元素正极替代物。然而,如何合理设计含硫量高的聚合物结构,提高锂硫电池的电化学性能仍是一个巨大的挑战。本研究以 1,2,3-三氯丙烷和硫为起始材料,在温和的条件下表面合成了含硫聚合物,聚合物内部 C-S 键的共价锚定有效抑制了多硫化物的穿梭效应,为锂离子的扩散提供了良好的内部环境。因此,丰富的硫含量(高于 80%)及其在聚合物骨架中的均匀分布决定了所获得的含硫聚合物具有优异的速率性能。在循环性能方面,电池的可逆比容量在 0.5 A/g 电流密度下循环 500 次后为 396 mAh/g,在 1 A/g 电流密度下循环 800 次后为 350 mAh/g,每次循环的容量衰减仅为 0.06%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.40
自引率
6.60%
发文量
639
审稿时长
29 days
期刊介绍: Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.
期刊最新文献
Editorial Board Mitochondria-targeted NIR molecular probe for detecting viscosity of gland damage and SO2 in actual samples Advanced Z-scheme H-g-C3N4/Bi2S3 nanocomposites: Boosting photocatalytic degradation of antibiotics under visible light exposure Sodium-doped LiFe0.5Mn0.5PO4 using sodium gluconate as both reducing agent and a doping source in Lithium-ion batteries Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1