Rapid and accurate mosquito abundance forecasting with Aedes-AI neural networks

Adrienne C. Kinney, Roberto Barrera, Joceline Lega
{"title":"Rapid and accurate mosquito abundance forecasting with Aedes-AI neural networks","authors":"Adrienne C. Kinney, Roberto Barrera, Joceline Lega","doi":"arxiv-2408.16152","DOIUrl":null,"url":null,"abstract":"We present a method to convert weather data into probabilistic forecasts of\nAedes aegypti abundance. The approach, which relies on the Aedes-AI suite of\nneural networks, produces weekly point predictions with corresponding\nuncertainty estimates. Once calibrated on past trap and weather data, the model\nis designed to use weather forecasts to estimate future trap catches. We\ndemonstrate that when reliable input data are used, the resulting predictions\nhave high skill. This technique may therefore be used to supplement vector\nsurveillance efforts or identify periods of elevated risk for vector-borne\ndisease outbreaks.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a method to convert weather data into probabilistic forecasts of Aedes aegypti abundance. The approach, which relies on the Aedes-AI suite of neural networks, produces weekly point predictions with corresponding uncertainty estimates. Once calibrated on past trap and weather data, the model is designed to use weather forecasts to estimate future trap catches. We demonstrate that when reliable input data are used, the resulting predictions have high skill. This technique may therefore be used to supplement vector surveillance efforts or identify periods of elevated risk for vector-borne disease outbreaks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用伊蚊-人工智能神经网络快速准确地预测蚊子数量
我们介绍了一种将天气数据转换为埃及伊蚊丰度概率预测的方法。该方法依赖于 Aedes-AI 神经网络套件,可产生每周点预测值及相应的不确定性估计值。一旦根据过去的诱捕器和天气数据进行校准,该模型就可以利用天气预报来估计未来的诱捕器捕获量。我们证明,如果使用可靠的输入数据,预测结果具有很高的技能。因此,这项技术可用于补充病媒监测工作或确定病媒传染病爆发的高危期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1