Development of Intensity Modulated Optical Fiber Based Partial Discharge Sensor for High Voltage Power Apparatus

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Dielectrics and Electrical Insulation Pub Date : 2024-08-26 DOI:10.1109/TDEI.2024.3449793
Krishanlal Adhikari;Chiranjib Koley;Nirmal Kumar Roy
{"title":"Development of Intensity Modulated Optical Fiber Based Partial Discharge Sensor for High Voltage Power Apparatus","authors":"Krishanlal Adhikari;Chiranjib Koley;Nirmal Kumar Roy","doi":"10.1109/TDEI.2024.3449793","DOIUrl":null,"url":null,"abstract":"Partial discharge (PD) monitoring presently emerged as an effective tool for condition monitoring of high voltage power apparatus. For high-voltage (HV) applications, fiber optic-based sensing has several advantages over conventional sensors requiring an electrical connection. Many fiber optic-based sensors are recently being proposed utilizing fiber Bragg grating, Sagnac effect, and interferometric principal for the PD monitoring of HV power apparatus that detects the acoustic wave generated from the occurrence of PD. This article presents an intensity-modulated fiber optic sensing principle that provides a more simplistic approach toward acoustic wave detection, as it does not require any specialized light source and detector. The PD is a stochastic natural phenomenon, and monitoring of PD demands high bandwidth in the high-frequency region so that low-frequency machinery noises are discarded. In this work, a fixed-fixed beam type structure that approximately resembles the characteristics of a bandpass filter has been designed from the first principal model equations. Then, an optical fiber-based secondary sensing element is used to convert the beam vibration into a light intensity that can be transmitted to monitoring stations at a long distance from the HV apparatus. The simulation-based study and its experimental verification reveal that the sensor can provide the required sensitivity and bandwidth in the high-frequency region for monitoring PD inside the HV power apparatus. Therefore, the proposed advanced PD sensor can be utilized for condition monitoring of electrical insulation.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"31 6","pages":"2905-2914"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10646551/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Partial discharge (PD) monitoring presently emerged as an effective tool for condition monitoring of high voltage power apparatus. For high-voltage (HV) applications, fiber optic-based sensing has several advantages over conventional sensors requiring an electrical connection. Many fiber optic-based sensors are recently being proposed utilizing fiber Bragg grating, Sagnac effect, and interferometric principal for the PD monitoring of HV power apparatus that detects the acoustic wave generated from the occurrence of PD. This article presents an intensity-modulated fiber optic sensing principle that provides a more simplistic approach toward acoustic wave detection, as it does not require any specialized light source and detector. The PD is a stochastic natural phenomenon, and monitoring of PD demands high bandwidth in the high-frequency region so that low-frequency machinery noises are discarded. In this work, a fixed-fixed beam type structure that approximately resembles the characteristics of a bandpass filter has been designed from the first principal model equations. Then, an optical fiber-based secondary sensing element is used to convert the beam vibration into a light intensity that can be transmitted to monitoring stations at a long distance from the HV apparatus. The simulation-based study and its experimental verification reveal that the sensor can provide the required sensitivity and bandwidth in the high-frequency region for monitoring PD inside the HV power apparatus. Therefore, the proposed advanced PD sensor can be utilized for condition monitoring of electrical insulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为高压电源设备开发基于强度调制光纤的局部放电传感器
局部放电监测是目前高压电力设备状态监测的一种有效手段。对于高压(HV)应用,基于光纤的传感与需要电气连接的传统传感器相比具有几个优点。近年来,人们提出了许多基于光纤的传感器,利用光纤Bragg光栅、Sagnac效应和干涉原理来检测PD发生时产生的声波,用于高压电力设备的PD监测。本文提出了一种强度调制光纤传感原理,它为声波检测提供了一种更简单的方法,因为它不需要任何专门的光源和探测器。局部振动是一种随机的自然现象,对局部振动的监测需要高频区域的高带宽,以排除低频的机械噪声。在这项工作中,从第一主模型方程出发,设计了一个近似于带通滤波器特性的固定-固定波束型结构。然后,使用基于光纤的二次传感元件将光束振动转换为光强度,该光强度可以传输到距离高压设备很远的监测站。基于仿真的研究和实验验证表明,该传感器能够在高频区域提供所需的灵敏度和带宽,用于高压电力设备内部局部放电的监测。因此,所提出的先进PD传感器可用于电绝缘状态监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Dielectrics and Electrical Insulation
IEEE Transactions on Dielectrics and Electrical Insulation 工程技术-工程:电子与电气
CiteScore
6.00
自引率
22.60%
发文量
309
审稿时长
5.2 months
期刊介绍: Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.
期刊最新文献
2024 Index IEEE Transactions on Dielectrics and Electrical Insulation Vol. 31 Table of Contents Editorial Condition Monitoring and Diagnostics of Electrical Insulation IEEE Transactions on Dielectrics and Electrical Insulation Information for Authors IEEE Transactions on Dielectrics and Electrical Insulation Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1