{"title":"Effect of viscosity on wind-driven gravitation waves","authors":"C. Chaubet, N. Kern, M. A. Manna","doi":"10.1063/5.0221941","DOIUrl":null,"url":null,"abstract":"We address the question of how viscosity impacts the growth of gravitation waves, such as those on the ocean, when they are driven by wind. There is so far no general rigorous theory for this energy transfer. We extend Miles' approach [J. W. Miles, “On the generation of surface waves by shear flows,” J. Fluid Mech. 3, 185–204 (1957)], using the same logarithmic wind profile, to incorporate bulk viscosity and derive modified growth rates. Exploiting the fact that water waves fall into the “weak viscosity” regime, we produce analytical expressions for the growth rate, which we solve using the numerical method proposed by Beji and Nadaoka [“Solution of Rayleigh's instability equation for arbitrary wind profiles,” J. Fluid Mech. 500, 65–73 (2004)]. Our results confirm that corrections to the growth rates are significant for wavelengths below a meter, and for weak to modest wind strengths. We show that all wave growth is suppressed, due to viscous effects, below a critical wind strength. We also show that the wave age corresponding to a developed sea is reduced by viscosity. We quantitatively characterize the zones, in terms of wind strength and wavelength, for which the wave growth is suppressed by viscosity.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"31 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0221941","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We address the question of how viscosity impacts the growth of gravitation waves, such as those on the ocean, when they are driven by wind. There is so far no general rigorous theory for this energy transfer. We extend Miles' approach [J. W. Miles, “On the generation of surface waves by shear flows,” J. Fluid Mech. 3, 185–204 (1957)], using the same logarithmic wind profile, to incorporate bulk viscosity and derive modified growth rates. Exploiting the fact that water waves fall into the “weak viscosity” regime, we produce analytical expressions for the growth rate, which we solve using the numerical method proposed by Beji and Nadaoka [“Solution of Rayleigh's instability equation for arbitrary wind profiles,” J. Fluid Mech. 500, 65–73 (2004)]. Our results confirm that corrections to the growth rates are significant for wavelengths below a meter, and for weak to modest wind strengths. We show that all wave growth is suppressed, due to viscous effects, below a critical wind strength. We also show that the wave age corresponding to a developed sea is reduced by viscosity. We quantitatively characterize the zones, in terms of wind strength and wavelength, for which the wave growth is suppressed by viscosity.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves