Jin Zhang, Shuyin Deng, Yulseong Kim, Xuebin Zheng
{"title":"A Comparative Analysis of Performance Efficiency for the Container Terminals in China and Korea","authors":"Jin Zhang, Shuyin Deng, Yulseong Kim, Xuebin Zheng","doi":"10.3390/jmse12091568","DOIUrl":null,"url":null,"abstract":"In this study, the static and dynamic performance efficiencies of container terminals are analyzed and compared for the main container terminals in China and Korea. The static performance efficiency is calculated using the Super-SBM model based on slack variables at the micro-level. An analysis on the dynamic performance efficiency is conducted with the Malmquist index method. The factors of scale and technology of container terminals are mainly taken into account to explore the performance efficient improvement path of container ports. We obtained the following conclusions: (1) The container terminals in Korea show a similar performance efficiency level to the terminals in China, and their performance efficiency is an overall upward trend over the past five years. (2) The main reason for inefficiency in the container terminals in China and Korea is predominantly scale inefficiency. (3) Boosting the automation degree does not have a completely positive impact on the efficiency of the terminal. (4) In 2019–2023, the technical progress index of all container terminals in China and Korea showed a decreasing trend, leading to performance inefficiency of the container terminals.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"63 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091568","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the static and dynamic performance efficiencies of container terminals are analyzed and compared for the main container terminals in China and Korea. The static performance efficiency is calculated using the Super-SBM model based on slack variables at the micro-level. An analysis on the dynamic performance efficiency is conducted with the Malmquist index method. The factors of scale and technology of container terminals are mainly taken into account to explore the performance efficient improvement path of container ports. We obtained the following conclusions: (1) The container terminals in Korea show a similar performance efficiency level to the terminals in China, and their performance efficiency is an overall upward trend over the past five years. (2) The main reason for inefficiency in the container terminals in China and Korea is predominantly scale inefficiency. (3) Boosting the automation degree does not have a completely positive impact on the efficiency of the terminal. (4) In 2019–2023, the technical progress index of all container terminals in China and Korea showed a decreasing trend, leading to performance inefficiency of the container terminals.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.