{"title":"A Comprehensive Review of Molecular Mechanisms Leading to the Emergence of Multidrug Resistance in Bacteria","authors":"Vandana Jhalora, Renu Bist","doi":"10.1007/s12088-024-01384-6","DOIUrl":null,"url":null,"abstract":"<p>Multidrug resistance (MDR) in bacteria poses a serious global health threat, compromising the effectiveness of antibiotics. MDR causes approximately 700,000 deaths annually, with MDR tuberculosis alone claiming 230,000 lives. While bacteria inherently possess intrinsic resistance, acquired resistance stands out as the primary culprit in MDR development. Acquired resistance mechanisms mediated by the bacterial cell wall, nucleic acids, and proteins play a pivotal role in the genesis of MDR. Bacteria can modify their cell wall structure, produce resistant enzymes, exhibit mutations in antibiotic-targeted genes, and acquire resistant genes through horizontal gene transfer. Bacteria can produce proteins that act as enzymes, chemically modifying or directly degrading the antibiotic molecules, leading to the loss of their functionality. Apart from these mechanisms, biofilms also play a pivotal role in MDR expansion. Despite the development of several antibiotics since the discovery of penicillin, continuous structural and molecular modifications in bacteria render these antibiotics ineffective against MDR. The most recent approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas), nanotechnology, a combination of CRISPR-Cas, and nanoparticles, show promise in treating MDR. Thus, this review delves deep into the molecular mechanisms of MDR, emphasizing the limitations of current antibiotics due to bacterial evolution and highlighting current strategies in the fight against MDR bacteria. This will drive comprehensive research to uncover additional resistance mechanisms and develop innovative strategies to combat resistant bacteria effectively.</p>","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"31 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12088-024-01384-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multidrug resistance (MDR) in bacteria poses a serious global health threat, compromising the effectiveness of antibiotics. MDR causes approximately 700,000 deaths annually, with MDR tuberculosis alone claiming 230,000 lives. While bacteria inherently possess intrinsic resistance, acquired resistance stands out as the primary culprit in MDR development. Acquired resistance mechanisms mediated by the bacterial cell wall, nucleic acids, and proteins play a pivotal role in the genesis of MDR. Bacteria can modify their cell wall structure, produce resistant enzymes, exhibit mutations in antibiotic-targeted genes, and acquire resistant genes through horizontal gene transfer. Bacteria can produce proteins that act as enzymes, chemically modifying or directly degrading the antibiotic molecules, leading to the loss of their functionality. Apart from these mechanisms, biofilms also play a pivotal role in MDR expansion. Despite the development of several antibiotics since the discovery of penicillin, continuous structural and molecular modifications in bacteria render these antibiotics ineffective against MDR. The most recent approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas), nanotechnology, a combination of CRISPR-Cas, and nanoparticles, show promise in treating MDR. Thus, this review delves deep into the molecular mechanisms of MDR, emphasizing the limitations of current antibiotics due to bacterial evolution and highlighting current strategies in the fight against MDR bacteria. This will drive comprehensive research to uncover additional resistance mechanisms and develop innovative strategies to combat resistant bacteria effectively.
期刊介绍:
Indian Journal of Microbiology is the official organ of the Association of Microbiologists of India (AMI). It publishes full-length papers, short communication reviews and mini reviews on all aspects of microbiological research, published quarterly (March, June, September and December). Areas of special interest include agricultural, food, environmental, industrial, medical, pharmaceutical, veterinary and molecular microbiology.