Ying-Ju Lai*, Yung-Hsin Yeh, Yen-Lin Huang, Celina De Almeida, Gwo-Jyh Chang, Wei-Jan Chen and Hsao-Hsun Hsu*,
{"title":"Empagliflozin Attenuates Pulmonary Arterial Remodeling Through Peroxisome Proliferator-Activated Receptor Gamma Activation","authors":"Ying-Ju Lai*, Yung-Hsin Yeh, Yen-Lin Huang, Celina De Almeida, Gwo-Jyh Chang, Wei-Jan Chen and Hsao-Hsun Hsu*, ","doi":"10.1021/acsptsci.4c0012710.1021/acsptsci.4c00127","DOIUrl":null,"url":null,"abstract":"<p >The loss of peroxisome proliferator-activated receptor gamma (PPARγ) exacerbates pulmonary arterial hypertension (PAH), while its upregulation reduces cell proliferation and vascular remodeling, thereby decreasing PAH severity. SGLT2 inhibitors, developed for type 2 diabetes, might also affect signal transduction in addition to modulating sodium-glucose cotransporters. Pulmonary arterial smooth muscle cells (PASMCs) isolated from patients with idiopathic pulmonary arterial hypertension (IPAH) were treated with three SGLT2 inhibitors, canagliflozin (Cana), dapagliflozin (Dapa), and empagliflozin (Empa), to investigate their antiproliferative effects. To assess the impact of Empa on PPARγ, luciferase reporter assays and siRNA-mediated PPARγ knockdown were employed to examine regulation of the γ-secretase complex and its downstream target Notch3. Therapy involving daily administration of Empa was initiated 21 days after inducing hypoxia-induced PAH in mice. Empa exhibited significant antiproliferative effects on fast-growing IPAH PASMCs. Empa activated PPARγ to prevent formation of the γ-secretase complex, with specific impacts on presenilin enhancer 2 (PEN2), which plays a crucial role in maintaining γ-secretase complex stability, thereby inhibiting Notch3. Similar results were obtained in lung tissue of chronically hypoxic mice. Empa attenuated pulmonary arterial remodeling and right ventricle hypertrophy in a hypoxic PAH mouse model. Moreover, PPARγ expression was significantly decreased and PEN2, and Notch3 levels were increased in lung tissue from PAH patients compared with non-PAH lung tissue. Empa reverses vascular remodeling by activating PPARγ to suppress the γ-secretase-Notch3 axis. We propose Empa as a PPARγ activator and potential therapeutic for PAH.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 9","pages":"2725–2738 2725–2738"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The loss of peroxisome proliferator-activated receptor gamma (PPARγ) exacerbates pulmonary arterial hypertension (PAH), while its upregulation reduces cell proliferation and vascular remodeling, thereby decreasing PAH severity. SGLT2 inhibitors, developed for type 2 diabetes, might also affect signal transduction in addition to modulating sodium-glucose cotransporters. Pulmonary arterial smooth muscle cells (PASMCs) isolated from patients with idiopathic pulmonary arterial hypertension (IPAH) were treated with three SGLT2 inhibitors, canagliflozin (Cana), dapagliflozin (Dapa), and empagliflozin (Empa), to investigate their antiproliferative effects. To assess the impact of Empa on PPARγ, luciferase reporter assays and siRNA-mediated PPARγ knockdown were employed to examine regulation of the γ-secretase complex and its downstream target Notch3. Therapy involving daily administration of Empa was initiated 21 days after inducing hypoxia-induced PAH in mice. Empa exhibited significant antiproliferative effects on fast-growing IPAH PASMCs. Empa activated PPARγ to prevent formation of the γ-secretase complex, with specific impacts on presenilin enhancer 2 (PEN2), which plays a crucial role in maintaining γ-secretase complex stability, thereby inhibiting Notch3. Similar results were obtained in lung tissue of chronically hypoxic mice. Empa attenuated pulmonary arterial remodeling and right ventricle hypertrophy in a hypoxic PAH mouse model. Moreover, PPARγ expression was significantly decreased and PEN2, and Notch3 levels were increased in lung tissue from PAH patients compared with non-PAH lung tissue. Empa reverses vascular remodeling by activating PPARγ to suppress the γ-secretase-Notch3 axis. We propose Empa as a PPARγ activator and potential therapeutic for PAH.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.