Mahlet M. Kebede, Leigh G. Terry, T. Prabhakar Clement and Mesfin M. Mekonnen*,
{"title":"Mapping Per- and Polyfluoroalkyl Substance Footprint from Cosmetics and Carpets across the Continental United States","authors":"Mahlet M. Kebede, Leigh G. Terry, T. Prabhakar Clement and Mesfin M. Mekonnen*, ","doi":"10.1021/acsestwater.4c0019810.1021/acsestwater.4c00198","DOIUrl":null,"url":null,"abstract":"<p >Per- and polyfluoroalkyl substances (PFAS) released from common consumer products, such as cosmetics and carpets, are nonpoint sources of environmental contamination. However, detailed information on PFAS mass and emission rates from these products is limited. Here, we propose a methodology to develop PFAS footprint from the manufacturing and supply chain data of cosmetics and carpets. Our analysis combines geospatial and statistical assessments to understand how the production and consumption of these products contribute to existing PFAS contamination hotspots in the Continental United States (CONUS). Statewide mass estimations revealed that North Carolina and New York contribute to the major PFAS mass released from cosmetics, while Georgia and California contribute to the major PFAS mass released from carpets. The average per capita PFAS footprint from carpets and cosmetics is about 103 mg/year. Upon disposal, over 60% of the mass eventually ends up in landfills. The accumulation of PFAS stocks in landfills, primarily from carpets and to some extent from cosmetics, highlights the critical need to cease the production and use of PFAS in consumer products. Coastal counties are particularly vulnerable due to higher population and therefore higher consumption of these PFAS-tainted consumer products. Additionally, counties with densely populated areas and with preexisting contamination sources would face increased vulnerability to PFAS contamination released from various consumer products.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"4 9","pages":"3882–3892 3882–3892"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c00198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFAS) released from common consumer products, such as cosmetics and carpets, are nonpoint sources of environmental contamination. However, detailed information on PFAS mass and emission rates from these products is limited. Here, we propose a methodology to develop PFAS footprint from the manufacturing and supply chain data of cosmetics and carpets. Our analysis combines geospatial and statistical assessments to understand how the production and consumption of these products contribute to existing PFAS contamination hotspots in the Continental United States (CONUS). Statewide mass estimations revealed that North Carolina and New York contribute to the major PFAS mass released from cosmetics, while Georgia and California contribute to the major PFAS mass released from carpets. The average per capita PFAS footprint from carpets and cosmetics is about 103 mg/year. Upon disposal, over 60% of the mass eventually ends up in landfills. The accumulation of PFAS stocks in landfills, primarily from carpets and to some extent from cosmetics, highlights the critical need to cease the production and use of PFAS in consumer products. Coastal counties are particularly vulnerable due to higher population and therefore higher consumption of these PFAS-tainted consumer products. Additionally, counties with densely populated areas and with preexisting contamination sources would face increased vulnerability to PFAS contamination released from various consumer products.