Prediction of air compressor faults with feature fusion and machine learning

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-09-12 DOI:10.1016/j.knosys.2024.112519
Abhay Nambiar , Naveen Venkatesh S. , Aravinth S. , Sugumaran V. , Sangharatna M. Ramteke , Max Marian
{"title":"Prediction of air compressor faults with feature fusion and machine learning","authors":"Abhay Nambiar ,&nbsp;Naveen Venkatesh S. ,&nbsp;Aravinth S. ,&nbsp;Sugumaran V. ,&nbsp;Sangharatna M. Ramteke ,&nbsp;Max Marian","doi":"10.1016/j.knosys.2024.112519","DOIUrl":null,"url":null,"abstract":"<div><p>Air compressors are critical for many industries, but early detection of faults is crucial for keeping them running smoothly and minimizing maintenance costs. This contribution investigates the use of predictive machine learning models and feature fusion to diagnose faults in single-acting, single-stage reciprocating air compressors. Vibration signals acquired under healthy and different faulty conditions (inlet valve fluttering, outlet valve fluttering, inlet-outlet valve fluttering, and check valve fault) serve as the study’s input data. Diverse features including statistical attributes, histogram data, and auto-regressive moving average (ARMA) coefficients are extracted from the vibration signals. To identify the most relevant features, the J48 decision tree algorithm is employed. Five lazy classifiers viz. k-nearest neighbor (kNN), K-star, local kNN, locally weighted learning (LWL), and random subspace ensemble K-nearest neighbors (RseslibKnn) are then used for fault classification, each applied to the individual feature sets. The classifiers achieve commendable accuracy, ranging from 85.33% (K-star and local kNN) to 96.00% (RseslibKnn) for individual features. However, the true innovation lies in feature fusion. Combining the three feature types, statistical, histogram, and ARMA, significantly improves accuracy. When local kNN is used with fused features, the model achieves a remarkable 100% classification accuracy, demonstrating the effectiveness of this approach for reliable fault diagnosis in air compressors.</p></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0950705124011535/pdfft?md5=eaa6a9ef6367d7e60620086f5b5b6da1&pid=1-s2.0-S0950705124011535-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124011535","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Air compressors are critical for many industries, but early detection of faults is crucial for keeping them running smoothly and minimizing maintenance costs. This contribution investigates the use of predictive machine learning models and feature fusion to diagnose faults in single-acting, single-stage reciprocating air compressors. Vibration signals acquired under healthy and different faulty conditions (inlet valve fluttering, outlet valve fluttering, inlet-outlet valve fluttering, and check valve fault) serve as the study’s input data. Diverse features including statistical attributes, histogram data, and auto-regressive moving average (ARMA) coefficients are extracted from the vibration signals. To identify the most relevant features, the J48 decision tree algorithm is employed. Five lazy classifiers viz. k-nearest neighbor (kNN), K-star, local kNN, locally weighted learning (LWL), and random subspace ensemble K-nearest neighbors (RseslibKnn) are then used for fault classification, each applied to the individual feature sets. The classifiers achieve commendable accuracy, ranging from 85.33% (K-star and local kNN) to 96.00% (RseslibKnn) for individual features. However, the true innovation lies in feature fusion. Combining the three feature types, statistical, histogram, and ARMA, significantly improves accuracy. When local kNN is used with fused features, the model achieves a remarkable 100% classification accuracy, demonstrating the effectiveness of this approach for reliable fault diagnosis in air compressors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用特征融合和机器学习预测空气压缩机故障
空气压缩机对许多行业都至关重要,但故障的早期检测对保持压缩机平稳运行和最大限度降低维护成本至关重要。本文研究了如何使用预测性机器学习模型和特征融合来诊断单作用单级往复式空气压缩机的故障。本研究的输入数据是在健康和不同故障条件(进气阀跳动、出气阀跳动、进气-出气阀跳动和止回阀故障)下采集的振动信号。研究人员从振动信号中提取了各种特征,包括统计属性、直方图数据和自动回归移动平均(ARMA)系数。为了识别最相关的特征,采用了 J48 决策树算法。然后使用五个懒惰分类器,即 K 近邻(kNN)、K-star、局部 KNN、局部加权学习(LWL)和随机子空间集合 K 近邻(RseslibKnn)进行故障分类,每个分类器都应用于单个特征集。对于单个特征,分类器达到了值得称赞的准确率,从 85.33%(K-star 和局部 kNN)到 96.00%(RseslibKnn)不等。然而,真正的创新在于特征融合。将统计、直方图和 ARMA 三种特征结合起来,可以显著提高准确率。当本地 kNN 与融合特征一起使用时,模型的分类准确率达到了惊人的 100%,证明了这种方法在空气压缩机可靠故障诊断方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Local Metric NER: A new paradigm for named entity recognition from a multi-label perspective CRATI: Contrastive representation-based multimodal sound event localization and detection ALDANER: Active Learning based Data Augmentation for Named Entity Recognition Robust deadline-aware network function parallelization framework under demand uncertainty PMCN: Parallax-motion collaboration network for stereo video dehazing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1