A fully automated model for land use classification from historical maps using machine learning

IF 3.8 Q2 ENVIRONMENTAL SCIENCES Remote Sensing Applications-Society and Environment Pub Date : 2024-09-12 DOI:10.1016/j.rsase.2024.101349
Anneli M. Ågren, Yiqi Lin
{"title":"A fully automated model for land use classification from historical maps using machine learning","authors":"Anneli M. Ågren,&nbsp;Yiqi Lin","doi":"10.1016/j.rsase.2024.101349","DOIUrl":null,"url":null,"abstract":"<div><p>Digital land use data before the age of satellites is scarce. Here, we build a machine learning model, using Extreme Gradient Boosting, that can automatically detect land use classes from an orthophoto map of Sweden (economic maps, 1:10 000 and 1:20 000) constructed from 1942 to 1988. Overall, the machine learning model demonstrated robust performance, with Cohen's Kappa and Matthews Correlation Coefficient of 0.86. The F1 values of the individual classes were 0.98, 0.95, 0.84, and 0.87 for graphics, arable land, forest, and open land, respectively. While the model can be used to detect land use changes in arable land, higher uncertainties associated with forest and open land necessitate further investigation at regional scales or exploration of improved mapping techniques. The code is publicly available to enable easy adaptation for classifying other historical maps.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101349"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Digital land use data before the age of satellites is scarce. Here, we build a machine learning model, using Extreme Gradient Boosting, that can automatically detect land use classes from an orthophoto map of Sweden (economic maps, 1:10 000 and 1:20 000) constructed from 1942 to 1988. Overall, the machine learning model demonstrated robust performance, with Cohen's Kappa and Matthews Correlation Coefficient of 0.86. The F1 values of the individual classes were 0.98, 0.95, 0.84, and 0.87 for graphics, arable land, forest, and open land, respectively. While the model can be used to detect land use changes in arable land, higher uncertainties associated with forest and open land necessitate further investigation at regional scales or exploration of improved mapping techniques. The code is publicly available to enable easy adaptation for classifying other historical maps.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习从历史地图中进行土地利用分类的全自动模型
卫星时代之前的数字土地利用数据非常稀少。在此,我们利用极端梯度提升技术建立了一个机器学习模型,该模型可从 1942 年至 1988 年绘制的瑞典正射影像图(经济地图,1:10 000 和 1:20 000)中自动检测土地利用类别。总体而言,机器学习模型表现稳健,Cohen's Kappa 和 Matthews 相关系数均为 0.86。图形、耕地、森林和空地的单类 F1 值分别为 0.98、0.95、0.84 和 0.87。虽然该模型可用于检测耕地的土地利用变化,但森林和空地的不确定性较高,因此有必要在区域范围内开展进一步研究,或探索改进制图技术。该模型的代码已公开发布,便于改编用于其他历史地图的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
期刊最新文献
Improving the estimation approach of percentage of impervious area for the storm water management model — A case study of the Zengwen reservoir watershed, Taiwan Multilayer optimized deep learning model to analyze spectral indices for predicting the condition of rice blast disease A review of the global operational geostationary meteorological satellites Assessing drivers of vegetation fire occurrence in Zimbabwe - Insights from Maxent modelling and historical data analysis Analysis of spatiotemporal surface water variability and drought conditions using remote sensing indices in the Kagera River Sub-Basin, Tanzania
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1