{"title":"Assessing drivers of vegetation fire occurrence in Zimbabwe - Insights from Maxent modelling and historical data analysis","authors":"Upenyu Mupfiga , Onisimo Mutanga , Timothy Dube","doi":"10.1016/j.rsase.2024.101404","DOIUrl":null,"url":null,"abstract":"<div><div>Vegetation fires are known to profoundly impact ecosystem structure and composition, posing threats to ecosystem stability and human safety. In Zimbabwe, uncontrolled fires have been recurrent, yet a rigorous analysis of the key drivers is still lacking. Previous studies in Zimbabwe have predominantly focused on spatio-temporal dynamics of the occurrence of vegetation fire, leaving a gap in understanding the underlying drivers. Accurate prediction of fire occurrence and identification of the major drivers is imperative for effective fire management strategies. The study employs the Maxent model, a machine-learning approach, to analyze historical MODIS fire data alongside bioclimatic, topographic, anthropogenic, and vegetation variables, to assess the likelihood of fire occurrence in Zimbabwe. The research also aims to elucidate the major factors that influence fire occurrence within the region. The independent contributions of predictor variables to the model's goodness of fit are evaluated using a jackknife test, while model accuracy is assessed using the AUC (area under the receiver operating characteristic curve). Results indicate that elevation, precipitation seasonality, temperature annual range and human footprint emerge as the major factors influencing fire occurrence in Zimbabwe. The model demonstrates an acceptable accuracy, with an average AUC of 0.77. This study underscores the utility of the Maxent model in elucidating the contributions of various environmental factors to vegetation fire occurrence. Moreover, the ability of the model to predict the probability of fire occurrence offers valuable insights for fire managers, facilitating the assessment of the spatial vulnerability of vegetation to fire occurrence. Overall, this research contributes to an improved understanding of the drivers of vegetation fires in Zimbabwe and provides a practical tool for enhancing fire management efforts in the region and beyond.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101404"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vegetation fires are known to profoundly impact ecosystem structure and composition, posing threats to ecosystem stability and human safety. In Zimbabwe, uncontrolled fires have been recurrent, yet a rigorous analysis of the key drivers is still lacking. Previous studies in Zimbabwe have predominantly focused on spatio-temporal dynamics of the occurrence of vegetation fire, leaving a gap in understanding the underlying drivers. Accurate prediction of fire occurrence and identification of the major drivers is imperative for effective fire management strategies. The study employs the Maxent model, a machine-learning approach, to analyze historical MODIS fire data alongside bioclimatic, topographic, anthropogenic, and vegetation variables, to assess the likelihood of fire occurrence in Zimbabwe. The research also aims to elucidate the major factors that influence fire occurrence within the region. The independent contributions of predictor variables to the model's goodness of fit are evaluated using a jackknife test, while model accuracy is assessed using the AUC (area under the receiver operating characteristic curve). Results indicate that elevation, precipitation seasonality, temperature annual range and human footprint emerge as the major factors influencing fire occurrence in Zimbabwe. The model demonstrates an acceptable accuracy, with an average AUC of 0.77. This study underscores the utility of the Maxent model in elucidating the contributions of various environmental factors to vegetation fire occurrence. Moreover, the ability of the model to predict the probability of fire occurrence offers valuable insights for fire managers, facilitating the assessment of the spatial vulnerability of vegetation to fire occurrence. Overall, this research contributes to an improved understanding of the drivers of vegetation fires in Zimbabwe and provides a practical tool for enhancing fire management efforts in the region and beyond.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems