Ya Liu , Gang Liu , Ju Gu , Hongqiang Shi , Hairu Li , Yuqian Han , Dandan Liu , Xiaolin Xia , Zhen Guo
{"title":"Soil erodibility and hillslope erosion processes affected by vegetation restoration duration","authors":"Ya Liu , Gang Liu , Ju Gu , Hongqiang Shi , Hairu Li , Yuqian Han , Dandan Liu , Xiaolin Xia , Zhen Guo","doi":"10.1016/j.still.2024.106305","DOIUrl":null,"url":null,"abstract":"<div><p>Restoring vegetation is an effective way to control regional erosion as well as reduce soil erodibility. However, it is not clear how the vegetation restoration duration affects soil erodibility and how it further influences soil erosion processes. Therefore, the soil physicochemical properties and comprehensive soil erodibility index (<em>CSEI</em>) at five sampling sites with 3, 20, 55, 80 and 100 years of vegetation restoration were investigated in this study. A simulated rainfall with intensities of 60, 90, and 120 mm h<sup>−1</sup> was conducted on three slopes with gradients of 10°, 20°, and 30° by using rare earth element oxides (Ho<sub>2</sub>O<sub>3</sub> and Sm<sub>2</sub>O<sub>3</sub>) as tracers to quantify interrill and rill erosion. The results revealed a decreasing trend in both the <em>CSEI</em> and sediment concentration with increasing vegetation restoration duration. Compared to that at the site with 3 years of vegetation restoration, the <em>CSEI</em> at the sites with 20, 55, 80, and 100 years of restoration was reduced by 35.2 %, 39.7 %, 92.8 %, and 67.1 %, respectively. Interrill erosion dominated the hillslope erosion processes and contributed more than 76.9 % to the total erosion amount. By comparing the measured and estimated erosion rates using the equations provided by the Water Erosion Prediction Project (WEPP), significant prediction errors were found. Therefore, relationships among the <em>CSEI</em>, slope gradient and rainfall intensity were established for interrill and rill erosion rate estimation in vegetation restoration areas. This study provides a theoretical basis for evaluating the soil and water conservation benefits of vegetation restoration and for improving soil erosion prediction models within the context of vegetation restoration.</p></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"245 ","pages":"Article 106305"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167198724003064/pdfft?md5=995c59647b4a0a7dfdffb2a9e0c8e7b5&pid=1-s2.0-S0167198724003064-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724003064","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Restoring vegetation is an effective way to control regional erosion as well as reduce soil erodibility. However, it is not clear how the vegetation restoration duration affects soil erodibility and how it further influences soil erosion processes. Therefore, the soil physicochemical properties and comprehensive soil erodibility index (CSEI) at five sampling sites with 3, 20, 55, 80 and 100 years of vegetation restoration were investigated in this study. A simulated rainfall with intensities of 60, 90, and 120 mm h−1 was conducted on three slopes with gradients of 10°, 20°, and 30° by using rare earth element oxides (Ho2O3 and Sm2O3) as tracers to quantify interrill and rill erosion. The results revealed a decreasing trend in both the CSEI and sediment concentration with increasing vegetation restoration duration. Compared to that at the site with 3 years of vegetation restoration, the CSEI at the sites with 20, 55, 80, and 100 years of restoration was reduced by 35.2 %, 39.7 %, 92.8 %, and 67.1 %, respectively. Interrill erosion dominated the hillslope erosion processes and contributed more than 76.9 % to the total erosion amount. By comparing the measured and estimated erosion rates using the equations provided by the Water Erosion Prediction Project (WEPP), significant prediction errors were found. Therefore, relationships among the CSEI, slope gradient and rainfall intensity were established for interrill and rill erosion rate estimation in vegetation restoration areas. This study provides a theoretical basis for evaluating the soil and water conservation benefits of vegetation restoration and for improving soil erosion prediction models within the context of vegetation restoration.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.