Disordered metallic carbon materials from graphene edge chemistry

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-08-15 DOI:10.1016/j.mattod.2024.07.011
Katarzyna Z. Donato , Gavin K.W. Koon , Sarah J. Lee , Alexandra Carvalho , Hui Li Tan , Mariana C.F. Costa , Jakub Tolasz , Petra Ecorchard , Paweł P. Michałowski , Ricardo K. Donato , A.H. Castro Neto
{"title":"Disordered metallic carbon materials from graphene edge chemistry","authors":"Katarzyna Z. Donato ,&nbsp;Gavin K.W. Koon ,&nbsp;Sarah J. Lee ,&nbsp;Alexandra Carvalho ,&nbsp;Hui Li Tan ,&nbsp;Mariana C.F. Costa ,&nbsp;Jakub Tolasz ,&nbsp;Petra Ecorchard ,&nbsp;Paweł P. Michałowski ,&nbsp;Ricardo K. Donato ,&nbsp;A.H. Castro Neto","doi":"10.1016/j.mattod.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><p>The creation of three dimensional (3D) structures out of two-dimensional (2D) materials while retaining their extraordinary mechanical and transport properties after processing is one of the current great challenges in materials sciences (Ruoff, 2008; Kong et al., 2019; Lin et al., 2019). Guided by density functional theory (DFT) and molecular dynamics (MD) simulations we found a successful route for a sustainable production of 3D metallic carbon materials that are synthesized from pristine 2D graphene flakes with hydrolyzed edges. The edge hydrolysis lead to strong geometrical anisotropy and self-organization in solution before processing. After processing we obtain a 3D carbon structure where 2D graphene flakes are crosslinked by carbon chains with aromatic groups at very mild annealing temperatures (∼150 °C), eliminating the constraints for achieving the in-situ preparation of conductive carbon structures. These 3D carbon structures preserve microscopic order but are macroscopically disordered, presenting physical properties of anisotropic metallic carbon with large Young modulus (E ≈ 20 GPa), and room temperature thermal (k ≈ 180 W/mK) and electrical (σ ≈ 300 kS/m) conductivities comparable to ordinary metals.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"79 ","pages":"Pages 49-59"},"PeriodicalIF":21.1000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001512","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The creation of three dimensional (3D) structures out of two-dimensional (2D) materials while retaining their extraordinary mechanical and transport properties after processing is one of the current great challenges in materials sciences (Ruoff, 2008; Kong et al., 2019; Lin et al., 2019). Guided by density functional theory (DFT) and molecular dynamics (MD) simulations we found a successful route for a sustainable production of 3D metallic carbon materials that are synthesized from pristine 2D graphene flakes with hydrolyzed edges. The edge hydrolysis lead to strong geometrical anisotropy and self-organization in solution before processing. After processing we obtain a 3D carbon structure where 2D graphene flakes are crosslinked by carbon chains with aromatic groups at very mild annealing temperatures (∼150 °C), eliminating the constraints for achieving the in-situ preparation of conductive carbon structures. These 3D carbon structures preserve microscopic order but are macroscopically disordered, presenting physical properties of anisotropic metallic carbon with large Young modulus (E ≈ 20 GPa), and room temperature thermal (k ≈ 180 W/mK) and electrical (σ ≈ 300 kS/m) conductivities comparable to ordinary metals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自石墨烯边缘化学的无序金属碳材料
从二维(2D)材料中创造出三维(3D)结构,同时在加工后保留其非凡的机械和传输特性,是当前材料科学领域的巨大挑战之一(Ruoff,2008;Kong 等人,2019;Lin 等人,2019)。在密度泛函理论(DFT)和分子动力学(MD)模拟的指导下,我们找到了一条可持续生产三维金属碳材料的成功之路,这种材料是由边缘水解的原始二维石墨烯薄片合成的。在加工之前,边缘水解会导致溶液中强烈的几何各向异性和自组织。加工后,我们获得了一种三维碳结构,在这种结构中,二维石墨烯薄片在非常温和的退火温度(150 °C)下被带有芳香基团的碳链交联,从而消除了实现原位制备导电碳结构的限制。这些三维碳结构在微观上保持了有序性,但在宏观上是无序的,具有各向异性金属碳的物理性质,杨氏模量大(E ≈ 20 GPa),室温热导率(k ≈ 180 W/mK)和电导率(σ ≈ 300 kS/m)与普通金属相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board Editorial Board Triboelectrification-induced electroluminescent skin for real-time information recording at a record low pressure threshold of 0.125 kPa Porous materials MOFs and COFs: Energy-saving adsorbents for atmospheric water harvesting The rise of 3D/4D-printed water harvesting materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1