{"title":"Synthesis of 2,3,4-13C-labeled isoflavone 7-O-glucosides","authors":"Zeguo Fang , Nawaf Al-Maharik","doi":"10.1080/07328303.2024.2366789","DOIUrl":null,"url":null,"abstract":"<div><p>The current body of research on the health implications of isoflavone phytoestrogens still presents unsolved matters pertaining to absorption, metabolism, and bioavailability. To conduct research in this particular domain, it is important to possess the means to obtain samples of both isoflavone 7-<em>O</em>-glucosides, which are naturally occurring in plants, and 7-<em>O</em>-glucuronides, which are major metabolites present in mammals. To comprehensively examine the potential health advantages, it is important to precisely measure the concentrations of phytoestrogens present in various food sources and bodily fluids. The use of C-labeled isoflavones was critical to the development of a methodology that allows for precise measurement. 2,3,4-<sup>13</sup>C-Labeled isoflavone 7-<em>O</em>-glucosides, namely 2,3,4-<sup>13</sup>C-labeled daidzin, genestin and glycitin, were efficiently prepared via BF<sub>3</sub>·Et<sub>2</sub>O catalyzed glycosylation at the 7-<em>O</em>-position of <sup>13</sup>C-labeled 4′-<em>O</em>-hexanoyldaidzein, 4′-<em>O</em>-hexanoylglycitein and 5,4′-<em>O</em>-dihexannoylgenestein with 2,2,2-trifluoro-<em>N</em>-(<em>p</em>-methoxyphenyl)acetamidates as glycosyl donors. It was found that protecting all of the OH groups in the isoflavones with hexanoyl groups, with the exception of the 7-OH group, resulted in an increase in both their solubility in organic solvents and the reaction efficiency.</p></div>","PeriodicalId":15311,"journal":{"name":"Journal of Carbohydrate Chemistry","volume":"43 1","pages":"Pages 37-50"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Carbohydrate Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S073283032400017X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The current body of research on the health implications of isoflavone phytoestrogens still presents unsolved matters pertaining to absorption, metabolism, and bioavailability. To conduct research in this particular domain, it is important to possess the means to obtain samples of both isoflavone 7-O-glucosides, which are naturally occurring in plants, and 7-O-glucuronides, which are major metabolites present in mammals. To comprehensively examine the potential health advantages, it is important to precisely measure the concentrations of phytoestrogens present in various food sources and bodily fluids. The use of C-labeled isoflavones was critical to the development of a methodology that allows for precise measurement. 2,3,4-13C-Labeled isoflavone 7-O-glucosides, namely 2,3,4-13C-labeled daidzin, genestin and glycitin, were efficiently prepared via BF3·Et2O catalyzed glycosylation at the 7-O-position of 13C-labeled 4′-O-hexanoyldaidzein, 4′-O-hexanoylglycitein and 5,4′-O-dihexannoylgenestein with 2,2,2-trifluoro-N-(p-methoxyphenyl)acetamidates as glycosyl donors. It was found that protecting all of the OH groups in the isoflavones with hexanoyl groups, with the exception of the 7-OH group, resulted in an increase in both their solubility in organic solvents and the reaction efficiency.
期刊介绍:
The Journal of Carbohydrate Chemistry serves as an international forum for research advances involving the chemistry and biology of carbohydrates. The following aspects are considered to fall within the scope of this journal:
-novel synthetic methods involving carbohydrates, oligosaccharides, and glycoconjugates-
the use of chemical methods to address aspects of glycobiology-
spectroscopic and crystallographic structure studies of carbohydrates-
computational and molecular modeling studies-
physicochemical studies involving carbohydrates and the chemistry and biochemistry of carbohydrate polymers.