{"title":"A quantum algorithm for the lattice-Boltzmann method advection-diffusion equation","authors":"","doi":"10.1016/j.cpc.2024.109373","DOIUrl":null,"url":null,"abstract":"<div><p>We present a versatile and efficient quantum algorithm based on the Lattice Boltzmann method (LBM) approximate solution of the linear advection-diffusion equation (ADE). We emphasize that the LBM approximation modifies the diffusion term of the underlying exact ADE and leads to a modified equation (mADE). Due to its versatility in terms of operator splitting, the proposed quantum LBM algorithm for the mADE provides a building block for future quantum algorithms to solve the linearized Navier-Stokes equation on quantum computers. We split the algorithm into four operations: initialization, collision, streaming, and calculation of the macroscopic quantities. We propose general quantum building blocks for each operator, which adapt intrinsically from the general three-dimensional case to smaller dimensions and apply to arbitrary lattice-velocity sets. Based on (sub-linear) amplitude data encoding, we propose improved initialization and collision operations with reduced complexity and efficient sampling-based simulation. Quantum streaming algorithms are based on previous developments. The proposed quantum algorithm allows for the computation of successive time steps, requiring full state measurement and reinitialization after every time step. It is validated by comparison with a digital implementation and based on analytical solutions in one and two dimensions. Furthermore, we demonstrate the versatility of the quantum algorithm for two cases with non-uniform advection velocities in two and three dimensions. Various velocity sets are considered to further highlight the flexibility of the algorithm. We benchmark our optimized quantum algorithm against previous methods employed in sampling-based quantum simulators. We demonstrate sampling efficiency, with sampling accelerated convergence requiring fewer shots.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010465524002960/pdfft?md5=e4e628fb077f6863c2f65ab258218bf8&pid=1-s2.0-S0010465524002960-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002960","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a versatile and efficient quantum algorithm based on the Lattice Boltzmann method (LBM) approximate solution of the linear advection-diffusion equation (ADE). We emphasize that the LBM approximation modifies the diffusion term of the underlying exact ADE and leads to a modified equation (mADE). Due to its versatility in terms of operator splitting, the proposed quantum LBM algorithm for the mADE provides a building block for future quantum algorithms to solve the linearized Navier-Stokes equation on quantum computers. We split the algorithm into four operations: initialization, collision, streaming, and calculation of the macroscopic quantities. We propose general quantum building blocks for each operator, which adapt intrinsically from the general three-dimensional case to smaller dimensions and apply to arbitrary lattice-velocity sets. Based on (sub-linear) amplitude data encoding, we propose improved initialization and collision operations with reduced complexity and efficient sampling-based simulation. Quantum streaming algorithms are based on previous developments. The proposed quantum algorithm allows for the computation of successive time steps, requiring full state measurement and reinitialization after every time step. It is validated by comparison with a digital implementation and based on analytical solutions in one and two dimensions. Furthermore, we demonstrate the versatility of the quantum algorithm for two cases with non-uniform advection velocities in two and three dimensions. Various velocity sets are considered to further highlight the flexibility of the algorithm. We benchmark our optimized quantum algorithm against previous methods employed in sampling-based quantum simulators. We demonstrate sampling efficiency, with sampling accelerated convergence requiring fewer shots.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.